11.3.1

Probability of Multiple Events

Definitions

- Outcome: The result of a trial, like flipping a coin, selecting an object, spinning a wheel, or rolling a die
- Sample Space: All the possible outcomes
- Event: Any outcome (or group of outcomes)
- Probability: notated P(event), tells you how likely it is that the event will occur.

Theoretical

Experimental

- The probability (percentage or fraction) that an outcome SHOULD occur
- All outcomes are equally likely to occur
- $P($ event $)=$ \# of favorable outcomes \# in the sample space
- The probability (percentage or fraction) that represents the outcome of an experiment
- $P($ event $)=$
\# of times outcome occured total \# of trials in experiment
- Complement of an event: all outcomes in the sample space that are not in the event.
- For example, if the event is rolling a number less than 3 on a die, the complement of the event is rolling the numbers $3-6$.
- $P($ event $)+P($ complement $)=1$
- $P($ complement $)=1-P($ event $)$
- To find the probability of two events occurring together, you have to decide whether one event occurring affects the other event.
- When the occurrence of one event affects how a second event can occur, then the events are dependent. If not, the events are independent.

Are these events dependent or independent?

- Roll a die then spin a spinner.
- Pick one card then a second (without replacing the first card)
- You pick a coin from a jar. You replace it and select again.

Compound Events

- If A \& B are independent events, then the probability that they will happen together is $P(A$ and $B)=P(A) \cdot P(B)$
- If two events cannot happen at the same time, they are called mutually exclusive. The probability they will happen together is 0 . $P(A$ and $B)=0$
- When events have at least one outcome in common, they are called overlapping events

"OR" Probabilities

- Probability of mutually exclusive events:

$$
P(A \text { or } B)=P(A)+P(B)
$$

"OR" Probabilities

Probability of Overlapping Events:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

