Normal Distributions and the Normal Curve

PR14 and PR15

Lesson 11.9

Date

Tuesday, May 21, 13

Recall some basic definitions

- Mean (called x-bar) the arithmetic average found by adding all data values, called x_i and dividing by n, where n represents the number of data values
 - The mean also can be represented by the symbol μ (pronounced "me-you")
- Standard deviation a measure of how much the values in a data set vary (deviate) from the mean

HEIGHTS OF MOTHERS

CLASS LIMITS(in.)	FREQUENCY		
52-53	0.5		
53-54	1.5		
54-55	1		
55-56	2		
56-57	6.5		
57-58	18		
58-59	34.5		
59-60	79.5		
60-61	135.5		
61-62	163		
62-63	183		
63-64	163		
64-65	114.5		
65-66	78.5		
66-67	41		
67-68	16		
68-69	7.5		
69-70	4.5		
70-71	2		
TOTAL	1052		

Histogram Of Heights Of Mothers (in.) Frequency Height

By connecting the left corners of each histogram bar, you create a "curve"

3 General Types of Curves

Variance	<	Variance	<	Variance
Standard Deviation	<	Standard Deviation	<	Standard Deviation

The Empirical Rule

- In any standard normal curve:
 - 68% of the data lies within one standard deviation of the mean (one left to one right)
 - 95% of the data lies within two standard deviations of the mean (two left and two right)
 - 99% of the data lies within three standard deviations of the mean

Another way to look at it

- 68% of the data fits within one standard deviation of the mean (1 σ) - the red
- * 95% of the data fits within two standard deviations of the mean (2σ) the red and green
- 99% of the data fits within three standard deviations of the mean (3 σ) the red, green, and blue

Assume mean = μ and standard deviation = σ

| | | | | | | μ-3σ μ-2σ μ-1σ μ μ+1σ μ+2σ μ+3σ

Tuesday, May 21, 13

Applying the information

40

 Assume the probability distribution has a mean of 40 and a standard deviation of 2.

* P(36 < x < 42) = ????

Applying the Information

 IQ scores are normally distributed with a mean of 100 and a standard deviation of 16.

 What is the 99th percentile of IQ scores, approximately?

Which is better: An ACT score of 30 or an SAT score of 750?

- ACT scores are normally distributed with a mean of 21.1 and a standard deviation of 4.7.
- SAT scores are normally distributed with a mean of 500 and a standard deviation of 115.