4.1.1/4.1.2

 Notes
Basic Definitions

- Central angle:
- Degree:
- Minutes:
- Seconds:
- Course / bearing:
- Line of travel:
- Radian:

DMS Conversion

Degree (${ }^{\circ}$) minute (${ }^{\prime}$) second (")
1 minute $=1 / 60$ of a degree; 1 second $=1 /\left(60^{*} 60\right)$ of a degree
Convert 48.125° to DMS

Convert $124^{\circ} 56^{\prime} 12^{\prime \prime}$ to degrees

Radian Conversions

To convert from radians (rad) to degrees $\left(^{\circ}\right.$), multiply the radian value by

To convert from degrees $\left({ }^{\circ}\right)$ to radians (rad), multiply the degree value by

How many radians is 305° ?

- How many degrees is $7 \pi / 3$?

Arc Length

- Since a central angle of 1 radian always intercepts an arc of one radius in length, it follows that a central angles of $\boldsymbol{\theta}$ radians in a circle of radius r intercepts an arc of length $\boldsymbol{\theta} r$.
- Arc length formula (radian measure):

Arc Length

- Arc length formula (degree measure):

Find the perimeter of a slice of apple pie, given the diameter of the pie is $9^{\prime \prime}$ and there are 8 slices of pie.

Work Through Example 4 (pg. 323)

Angular and linear motion

* Angular speed is measured in units like revolutions per minute
- Linear speed is measured in units like $m p h$, $f p s$, etc.
- Based on conversion factors (like radians to degrees or degrees to DMS)

Problem

*Tonie's truck has 42" Mickey Thompson tires. If the wheels are rotating at 630 rpm , what is her truck's mph?

Problem 2

* Cary races BMX. His wheels have a $13^{\prime \prime}$ radius. When he is traveling at a speed of $37 \mathrm{ft} / \mathrm{sec}$, how many revolutions per minute are the wheels making?

