4.3.1 and 4.2.1 Notes

 OS4.3.1: Coterminal angles
4.2.1: Right triangle trig and unit circle

Definitions

\& Initial side:

\propto Terminal side:
œ Vertex:
cos Measure of an angle:

Definitions

\propto Positive angles:
cs Negative angles:
c< Standard position
\& Coterminal angles:

Basic Idea

 03as Coterminal angles differ by an integer multiple of 360° or 2π radians.
co Ex: Find a positive angle and a negative angle that are coterminal with 30°. (P. 339)

Basic Idea

C_{3} Find a positive angle and a negative angle that are coterminal with $\frac{2 \pi}{3}$ (P. 339)

4.2.1: Trig (P. 329)

∞ In the right triangle at the right, $\angle A$ is the reference angle. Identify the ratios:
$\cos \operatorname{Sin}(\mathrm{A})=$

$\cos ^{\operatorname{Cos}(\mathrm{A})=}$
$\cos \operatorname{Tan}(\mathrm{A})=$

4.2.1: Trig (P. 329)

∞ In the right triangle at the right, $\angle A$ is the reference angle. Identify the ratios:
$\cos \operatorname{Csc}(\mathrm{A})=$

$\cos ^{\operatorname{Sec}(A)=}$
$\cos \operatorname{Cot}(\mathrm{A})=$

Cos Let θ be an acute angle such that $\sin \theta=\frac{2}{3}$. Find the remaining 5 trig ratios. $\sin \theta=\frac{2}{3}=\frac{\operatorname{leg} \text { opp } \theta}{\text { hypotenuse }}$. Use this info to draw a diagram.

Use Pythagorean Theorem to find the missing segment.

$$
\begin{aligned}
& b=\sqrt{3^{2}-2^{2}}=\sqrt{5} \\
& \cos \theta=\frac{\sqrt{5}}{3} \quad \tan \theta=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5} \\
& \csc \theta=\frac{3}{2} \quad \sec \theta=\frac{3}{\sqrt{5}}=\frac{3 \sqrt{5}}{5} \\
& \cot \theta=\frac{\sqrt{5}}{2}
\end{aligned}
$$

What are the 4 Common Errors When using a calculator to evaluate a trig expression? (P. 332)
1.
2.
3.
4.

Reference Triangle

\propto A reference triangle is formed using the terminal side of the angle θ, the x-axis, and a perpendicular dropped from a point on the terminal side to the x-axis.

FIGURE 4.24 A point $P(x, y)$ in Quadrant I determines an acute angle θ. The number r denotes the distance from P to the origin.

From last year...

 OS$\propto<$ When we initially looked at graphing reference triangles on a coordinate plane, we concluded that $\cos \cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$ (using the previous slide)
CB_{3} Using slide 8's information and connecting it to the reference triangle on slide 10, find the other four trig ratio values using a coordinate plane (on P. 320)
$\bigcirc \csc \theta=$
$\cos \cot \theta=$
$\propto \tan \theta=$
$\propto \sec \theta=$
\propto The point $(-4,-6)$ is on the terminal side of angle θ. Evaluate cos, csc, and tan for θ.
os You know $x=-4$ and $y=-6$. You need to find r using Pythagorean Theorem. $r=\sqrt{(-4)^{2}+(-6)^{2}}=$ $\sqrt{52}=2 \sqrt{13}$.
Now find the ratios:
$\csc \theta=\frac{2 \sqrt{13}}{-6}=\frac{-\sqrt{13}}{3}$
$\cos \theta=\frac{-4}{2 \sqrt{13}}=\frac{-2 \sqrt{13}}{13}$
$\tan \theta=\frac{-6}{-4}=\frac{3}{2}$

Unit Circle

Ca Found on P. 346
© You will need to recreate this if you don't have one already.

