Writing a Function Rule

4.5.1

Example 1

- You can estimate the temperature by counting the number of chirps of the snowy tree cricket. The outdoor temperature is about 40 degrees F more than one fourth the number of chirps the cricket makes in one minute. What is the function rule that represents this situation?
- Relate Temperature is 40 deg f more than $1 / 4$ of the number of chirps in 1 min .
- Define Let $\mathrm{T}=$ Temperature and Let $\mathrm{n}=$ number of chirps in 1 min .
- Write

$$
\mathrm{T}=40+1 / 4 \mathrm{n}
$$

Example 2

- A landfill has 50,000 tons of waste in it. Each month it accumulates an average of 420 more tons of waste. What is a function rule that represents the total amount of waste after m months?
- Relate The total amount of waste is 420 tons a month plus 50,000.
- Define Let $\mathrm{W}=$ Total amount of waste. Let $\mathrm{m}=$ the number of months.
- Write

$$
W=420 \mathrm{~m}+50000
$$

Example 3

- A concert Seating plan is shown below. Reserved seating is sold out. Total revenue from ticket sales will depend on the number of general-seating tickets sold. Write a function rule to represent this situation. What is the maximum possible total revenue?
- Relate Total revenue is Price per ticket times number of tickets sold plus reserved
- Define Let $\mathrm{r}=$ total revenue. Let $\mathrm{n}=$ number of
general seating tickets sold.
- Write

$$
\begin{aligned}
\mathrm{R}= & 10 \mathrm{n}+\left(25^{*} 10^{*} 12\right) \\
& \mathrm{R}=10 \mathrm{n}+3000
\end{aligned}
$$

Solve: How many general-seating tickets are there?
$30 * 16=480$ tickets
Maximum Revenue
$\mathrm{R}=10(480)+3000=7800$

Example 4

- A kennel charges $\$ 15$ per day to board dogs. Upon arrival, each dog must have a flea bath that costs $\$ 12$. Write a function rule for the total cost for n days of boarding plus a bath. How much does a 10 -day stay cost?
- Relate The Total cost is $\$ 15$ dollars per day plus $\$ 12$ for the bath.
- Define Let $\mathrm{C}=$ Total Cost. Let $\mathrm{n}=$ the number of days.
- Write

$$
C=15 n+12
$$

- Solve

$$
\mathrm{C}=15(10)+12=150+12=162 \text { dollars }
$$

Example 5

- Write a function rule for the area of a rectangle whose length is 5 ft more than its width. What is the area of the rectangle when its width is 9 ft ?
- Represent the general relationship first.

- Revise the model to show that the length is 5 ft more than the width.

- Use the diagram to write the function rule.

$$
\begin{aligned}
& \mathrm{A}=\mathrm{w}(\mathrm{w}+5) \\
& \mathrm{A}=\mathrm{w}^{\wedge} 2+5 \mathrm{w}
\end{aligned}
$$

- Solve for the area when the width is 9 ft .

$$
\begin{aligned}
\mathrm{A}= & (9)^{\wedge} 2+5(9) \\
& =81+45
\end{aligned}
$$

