Dividing Polynomials

Got lt? Use polynomial long division to divide $3x^2 - 29x + 56$ by x - 7. What are the quotient and remainder?

4. Use the justifications to divide the expressions.

Divide the first term in the dividend by the first term in the divisor to get the first term in the quotient: $3x^2 \div x = 3x$. Multiply the first term in the quotient by the divisor: 3x(x - 7). Subtract to get -8x. Bring down 56. Divide -8x by x. Subtract to find the remainder.

130

5. Identify each part of the problem.

Dividend	Divisor
Quotient	Remainder
6. Check your solution.	

Key Concept The Division Algorithm for Polynomials		
You can divide polynomial $P(x)$ by polynomial $D(x)$ to get polynomial quotient $Q(x)$ and polynomial remainder $P(x)$. $Q(x)$ $D(x)P(x)$ *The result is $P(x) = D(x)Q(x) + R(x)$.*		
If $R(x) = 0$, then $P(x) = D(x)Q(x)$ and $D(x)$ and $Q(x)$ are factors of $P(x)$.		
To use long division, $P(x)$ and $D(x)$ should be in standard form with zero*coefficients where appropriate. The process stops when the degree of the remainder, $P(x)$, is less than the degree of the divisor, $D(x)$.*		
7. Cross out the polynomials that are NOT in the correct form for long division.		
$x^3 - 7x + 2$ $2x^4 + 3x$ $4x^3 + 9x^2 + 0x - 12$		

Problem 2 Checking Factors

Got lt? Is $x^4 - 1$ a factor of $P(x) = x^5 + 5x^4 - x - 5$? If it is, write P(x) as a product of two factors.

8. Divide.

a a lui

9. Write P(x) as a product of two factors.

Underline the correct word(s), number, or expression to complete each sentence.

10. The remainder of the quotient is 0/x + 5/x - 5.

11. The expression $x^4 - 1$ is / is not a factor of $P(x) = x^5 + 5x^4 - x - 5$.

Problem 3 Using Synthetic Division

132

21. *P*(-4) =