5-4
 Dividing Polynomials

Vocabulary

Review

1. Circle the factors of $x^{3}-4 x^{2}$.
x^{2}
x^{3}
$x-4$
$-4 x^{2}$
2. Cross out the expression that is NOT a factor of $2 x^{5}+8 x^{3}$.
x^{2}
$2 x^{3}$
$2 x^{2}+8$ $8 x^{3}$

Vocabulary Builder

quotient (noun) кwон shunt
Related Words: dividend, divisor, remainder

$$
\begin{aligned}
& \text { divisor } \longrightarrow 3 \longdiv { 1 9 } \leftarrow \text { quotient } \\
& \frac{18}{1} \text { dividend } \\
& \text { 匹remainder }
\end{aligned}
$$

Main Idea: A quotient is the simplification of a division expression.

Use Your Vocabulary

3. Circle the dividend and underline the divisor in each quotient.
$\frac{x}{5}$
$3.2 \div 16$
$1 5 \longdiv { 1 0 0 }$
two divided by seven

Problem 1 Polynomial Long Division

Got lt? Use polynomial long division to divide $3 x^{2}-29 x+56$ by $x-7$. What are the quotient and remainder?
4. Use the justifications to divide the expressions.

Divide the first term in the dividend by the first term in the divisor to get the first term in the quotient: $3 x^{2} \div x=3 x$.
Multiply the first term in the quotient by the divisor: $3 x(x-7)$.
Subtract to get $-8 x$. Bring down 56 .
Divide $-8 x$ by x.
Subtract to find the remainder.
5. Identify each part of the problem.

Dividend

Quotient
迤
6. Check your solution.

Divisor

Remainder
居
0^{2}

Key Concept The Division Algorithm for Polynomials

You can divide polynomial $P(x)$ by polynomial $D(x)$ to get polynomial quotient $Q(x)$ and polynomial remainder $P(x)$.
The result is $P(x)=D(x) Q(x)+R(x)$.
$\begin{array}{r}Q (x) \longdiv { P (x) } \\ \hline\end{array}$
If $R(x)=0$, then $P(x)=D(x) Q(x)$ and $D(x)$ and $Q(x)$ are factors of $P(x)$.
To use long division, $P(x)$ and $D(x)$ should be in standard form with zero coefficients where appropriate. The process stops when the degree of the remainder, $P(x)$, is less than the degree of the divisor, $D(x)$.
7. Cross out the polynomials that are NOT in the correct form for long division.

$$
x^{3}-7 x+2 \quad 2 x^{4}+3 x \quad 4 x^{3}+9 x^{2}+0 x-12
$$

Problem 2 Checking Factors

Got It? Is $x^{4}-1$ a factor of $P(x)=x^{5}+5 x^{4}-x-5$? If it is, write $P(x)$ as a product of two factors.
8. Divide.

$$
x ^ { 4 } - 1 \longdiv { x ^ { 5 } + 5 x ^ { 4 } + 0 x ^ { 3 } + 0 x ^ { 2 } - x - 5 }
$$

\qquad

9. Write $P(x)$ as a product of two factors.

Underline the correct word(s), number, or expression to complete each sentence.
10. The remainder of the quotient is $0 / x+5 / x-5$.
11. The expression $x^{4}-1$ is / is not a factor of $P(x)=x^{5}+5 x^{4}-x-5$.

Problem 3 Using Synthetic Division

Got It? Use synthetic division to divide $x^{3}-57 x+56$ by $x-7$. What are the quotient and remainder?
12. Do the synthetic division. Remember that the sign of the number in the divisor is reversed.

Write the coefficients of the polynomial.
Bring down the first coefficient. Multiply the coefficient by the divisor.
Add to the next coefficient. Continue multiplying and adding through the last coefficient.
13. The quotient is
, and the remainder is

Problem 4 Using Synthetic Division to Solve a Problem

Got It? Crafts If the polynomial $x^{3}+6 x^{2}+11 x+6$ expresses the volume, in cubic inches, of a shadow box, and the width is $(x+1)$ in., what are the dimensions of the box?
14. Use synthetic division.
15. Factor the quotient.
16. The height of the box is
in., the width of the box is
in., and
the length of the box is
in.

Theorem The Remainder Theorem

If you divide a polynomial $P(x)$ of degree $n \geq 1$ by $x-a$, then the remainder is $P(a)$.
17. If you divide $3 x^{2}+x-5$ by $x-1$, the remainder is $P(\square)$.
18. If you divide $2 x^{2}+x+6$ by $x+1$, the remainder is $P(\quad)$.

Problem 5 Evaluating a Polynomial

Got lt? What is $P(-4)$, given $P(x)=x^{5}-3 x^{4}-28 x^{3}+5 x+20$?
19. $P(-4)$ is the remainder when you divide

$$
x^{5}-3 x^{4}-28 x^{3}+5 x+20 \text { by } x-4 / 4-x / x+4
$$

20. Use synthetic division. Circle the remainder.
21. $P(-4)=$

Lesson Check - Do you UNDERSTAND?

Reasoning A polynomial $P(x)$ is divided by a binomial $x-a$. The remainder is zero.
What conclusion can you draw? Explain.
Write T for true or F for false.
22. One factor of the polynomial is $x-a$.
23. One root of the polynomial is $-a$.
24. An x-intercept of the graph of $y=P(x)$ is a.
25. If $P(x)$ is divided by $x-a$ then $P(a)=$ the remainder and $P(x)=(x-a)(Q(x))$.

This illustrates the Division Algorithm / Remainder Theorem / Factor Theorem .
26. If the remainder of $P(x)$ divided by $x-a$ is zero, what do you know about the factors and roots of $P(x)$?
\qquad
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
\square polynomialsynthetic divisionRemainder Theorem

Rate how well you can divide polynomials.

