CHAPTER 9

Sequences and Series

INTRO TO TODAY'S LESSON

Ν	Y
1	36
2	32
3	28
4	24
5	20
n	40-4n

- What is the sequence?
- Why must the input start at "1"?
- What is the domain of this sequence?
 - Why does this make sense?

DEFINITIONS

- A sequence can always be graphed the ordered pairs look like (n, a_n) , where n is the index (or position) and a_n is the term.
- The *domain* of any sequence is Natural Numbers (also called counting numbers)
- The graph is NOT continuous; it is a set of graphed points only
 - There is no term at the 2 and a half-th position

TWO TYPES OF RULES FOR SEQUENCES

• Explicit

- Allows direct evaluation for any term given its position
- Works well for finding terms that are far apart
- Can be difficult to find

Recursive

- Requires an initial term to find the next term
- Defines each term using the first term as a starting point
- Easy to evaluate for sequential terms
- Works well for small portions of the sequence

DEFINITION: ARITHMETIC SEQUENCE

- A sequence with a pattern of addition or subtraction.
 - The difference between two consecutive numbers in the sequence will always be the same

RULES FOR ARITHMETIC SEQUENCES

• Explicit:

$$a_n = a_1 + d(n-1)$$

- *a_n* means any term in the sequence called "a"
- a_1 is the first term
- d is the pattern, called the constant difference
- on is the index
- Can be simplified to y = mx + b

Recursive:

 $\label{eq:alpha_linear} \left\{ \begin{aligned} a_1 &= the \; first \; term \\ a_n &= a_{n-1} + d \end{aligned} \right.$

- Where d is the pattern (constant difference)
- a_{n-1} is the notation that means the phrase "the previous term"

 Either rule can be written for a sequence, sometimes it's more useful to write a recursive. If you are not told which one to write, it is your choice.

IS THIS FORMULA RECURSIVE OR EXPLICIT?

•
$$a_n = -4n^2 - 2$$

• $\begin{cases} a_1 = 3 \\ a_n = 2a_{n-1} + 3 \end{cases}$
• $a_n = (n - 5)(n + 5)$
• $a_n = -3a_{n-1}$, where $a_1 = -2$

WRITE A RULE FOR THIS SEQUENCE ● 5, 8, 11, 14, ...

WRITE AN EXPLICIT RULE GIVEN THIS RECURSIVE FORMULA

• $a_n = a_{n-1} + 4$ where n = -9

ERROR ANALYSIS

 A student says the next term of the arithmetic sequence 0, 2, 4,... is 8. Explain and correct the students' error.

• How could this be changed so the student's answer be correct?

ARITHMETIC MEAN

- To find a missing term between two other terms in an arithmetic sequence, find the arithmetic mean of the two given terms.
- For example, suppose you have 55, ____, 68. To find the missing number, $\frac{55+68}{2} = 61.5$. The sequence looks like 55, 61.5, 68