CHAPTER 9
 Sequences and Series

N	Y
1	36
2	32
3	28
4	24
5	20
n	40-4n

- What is the sequence?
- Why must the input start at " 1 "?
- What is the domain of this sequence?
- Why does this make sense?

DEFINITIONS

- A sequence can always be graphed - the ordered pairs look like (n, a_{n}), where n is the index (or position) and a_{n} is the term.
- The domain of any sequence is Natural Numbers (also called counting numbers)
- The graph is NOT continuous; it is a set of graphed points only
- There is no term at the 2 and a half-th position

TWO TYPES OF RULES FOR SEQUENCES

- Explicit
- Allows direct evaluation for any term given its position
- Works well for finding terms that are far apart
- Can be difficult to find
- Recursive
- Requires an initial term to find the next term
- Defines each term using the first term as a starting point
- Easy to evaluate for sequential terms
- Works well for small portions of the sequence

DEFINITION: ARITHMETIC SEQUENCE

- A sequence with a pattern of addition or subtraction.
- The difference between two consecutive numbers in the sequence will always be the same

RULES FOR ARITHAMETIC

SEQUENCES

- Explicit:
- $a_{n}=a_{1}+d(n-1)$
- a_{n} means any term in the sequence called "a"
- a_{1} is the first term
- d is the pattern, called the constant difference
- n is the index
- Can be simplified to
$y=m x+b$
- Recursive:
$=\left\{\begin{array}{c}a_{1}=\text { the first term } \\ a_{n}=a_{n-1}+d\end{array}\right.$
- Where d is the pattern (constant difference)
- a_{n-1} is the notation that means the phrase "the previous term"
- Either rule can be written for a sequence, sometimes it's more useful to write a recursive. If you are not told which one to write, it is your choice.

IS THIS FORMULA RECURSIVE OR

EXPLICIT?

o $a_{n}=-4 n^{2}-2$

- $\left\{\begin{array}{c}a_{1}=3 \\ a_{n}=2 a_{n-1}+3\end{array}\right.$
$\circ a_{n}=(n-5)(n+5)$
○ $a_{n}=-3 a_{n-1}$, where $a_{1}=-2$

WRITE A RULE FOR THIS SEQUENCE

© $5,8,11,14, \ldots$

- 21, 13, 5, -3

WRITE AN EXPLICITT RULE GIVEN THIS RECURSIVE FORMULA

- $a_{n}=a_{n-1}+4$ where $n=-9$

ERROR ANALYSIS

- A student says the next term of the arithmetic sequence $0,2,4, \ldots$ is 8 . Explain and correct the students' error.
- How could this be changed so the student's answer be correct?

ARITHMETIIC MEAN

- To find a missing term between two other terms in an arithmetic sequence, find the arithmetic mean of the two given terms.
© For example, suppose you have $55, \ldots, 68$. To find the missing number, $\frac{55+68}{2}=61.5$.
The sequence looks like 55, 61.5, 68

