Chapter 6, Part 1

Vectors in the Plane

Precalculus

Why Vectors?

* Some quantities, like temperature, height, area, and volume can be represented by a single real number that indicates magnitude or size
* Other quantities, like acceleration, velocity, and force have both magnitude and direction
* Use ordered pairs to help describe magnitude and direction
* While (a, b) represents a point in the plane, it also determines a directed line segment with its tail at the origin and its head at (a, b).
* This is called the position vector of (\mathbf{a}, \mathbf{b})
* The length of the arrow is its magnitude
* magnitude $=|v|$
* The direction to which the arrow points is the vector's direction
* A vector can be notated by \mathbf{v}, or $<\mathrm{a}, \mathrm{b}>$
* <a, $\mathrm{b}>$ is called the component form of the vector, these are used to show a vector instead of an ordered pair
* In $<a, b\rangle$, " a " is the horizontal component of the vector, and " b " is the vertical component of the vector
* You may also see a vector written in standard form: $<\mathrm{a}, \mathrm{b}>=\mathrm{ai}+\mathrm{b} \mathbf{j}$
* A zero vector has zero length and no direction. It's component form is $<0,0>$
* A vector has a tail point called the initial point and a head point called the terminal point.
* Two arrows (vectors) with the same length pointing in the same direction represent the same vector $<\mathrm{a}, \mathrm{b}>$. They are called equivalent vectors.
* To find the values of " a " and " b ", use the HMT (head minus tail) rule: Given initial point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and terminal point ($\mathrm{x}_{2}, \mathrm{y}_{2}$), the component form is found by $<\mathrm{x}_{1}-\mathrm{X}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}>$

You try...

* An arrow has an initial point $(2,3)$ and terminal point $(7,5)$. What vector does it represent?
* An arrow represents the vector $<-3,6>$ with an initial point $(3,5)$. What is the terminal point?

Formula for Magnitude

* Because the magnitude of a vector is the length of the arrow, the distance formula is used to determine the magnitude.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

* The horizontal component of the vector is "a" and the vertical component of the vector is " b ", so the formula for magnitude is a version of Pythagorean Theorem:

$$
|v|=\sqrt{ }\left(a^{2}+b^{2}\right)
$$

Vector Addition

* Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$. The sum (also called the resultant) of the vectors \mathbf{u} and \mathbf{v} is

$$
\mathbf{u}+\mathbf{v}=<u_{1}+v_{1}, u_{2}+v_{2}>
$$

Tail-to-head representation

Parallelogram representation

Scalar Multiplication

* To multiply by a scalar is to use Distributive Property.
* Let $\mathbf{u}=<u_{1}, u_{2}>$ and k be a scalar, then $k \mathbf{u}=<k u_{1}, k u_{2}>$
* A unit vector has a length of one unit
$*|\mathbf{u}|=1$
*A unit vector is found by: $\mathbf{u}=\mathbf{v} \div|\mathbf{v}|$

You try...

* Find the unit vector in the direction of:
$\because \mathbf{u}=<6,-2>$
* $\mathbf{w}=7 \mathbf{i}+7 \mathbf{j}$

Direction Angles (again...)

* From chapter 4 you should remember that direction is measured in different ways, especially in navigation (i.e. bearing).
* In vectors, we specify the direction of a vector \mathbf{v} using its direction angle, the angle θ that v makes with the positive x-axis.
* Using what you learned from chapter 4, the horizontal component of \mathbf{v} is $|\mathbf{v}| \cos \theta$ and the vertical component of $\mathbf{v} \theta$ is $|\mathbf{v}| \sin \theta$

$$
\mathrm{a}=|\mathbf{v}| \cos \theta \quad \text { and } \mathrm{b}=|\mathbf{v}| \sin \theta
$$

* To solve for $\mathrm{a}=|\mathbf{v}| \cos \theta$ and $\mathrm{b}=|\mathbf{v}| \sin \theta$ is to resolve the vector.

Try this...

Find the component form of question \#29 on page 464

Find the magnitude and direction of the vector described by <-1, $2>$

Applications of Vectors

* The velocity of a moving object is a vector because velocity has both magnitude and direction. The magnitude of velocity is speed.

