Chapter 6, Part 1

Vectors in the Plane

Precalculus

Friday, February 22, 13

Why Vectors?

- * Some quantities, like temperature, height, area, and volume can be represented by a single real number that indicates magnitude or size
- Other quantities, like acceleration, velocity, and force have both magnitude and direction
 - * Use ordered pairs to help describe magnitude and direction
 - While (a, b) represents a point in the plane, it also determines a directed line segment with its tail at the origin and its head at (a, b).
 - This is called the position vector of (a, b)

* The length of the arrow is its **magnitude**

* magnitude = |v|

- The direction to which the arrow points is the vector's direction
- * A vector can be notated by **v**, or <a, b>
 - <a, b> is called the component form of the vector, these are used to show a vector instead of an ordered pair

- In <a, b>, "a" is the horizontal component of the vector, and "b" is the vertical component of the vector
- You may also see a vector written in <u>standard form</u>:
 <a, b> = ai + bj
- A <u>zero vector</u> has zero length and no direction. It's component form is <0, 0>
- A vector has a tail point called the <u>initial point</u> and a head point called the <u>terminal point</u>.

- Two arrows (vectors) with the same length pointing in the same direction represent the same vector <a, b>.
 They are called <u>equivalent vectors.</u>
- * To find the values of "a" and "b", use the HMT (head minus tail) rule: Given initial point (x₁, y₁) and terminal point (x₂, y₂), the component form is found by <x₁- x₂, y₁-y₂>

- * An arrow has an initial point (2, 3) and terminal point (7, 5). What vector does it represent?
- An arrow represents the vector <-3, 6> with an initial point (3, 5).
 What is the terminal point?

Formula for Magnitude

* Because the magnitude of a vector is the length of the arrow, the distance formula is used to determine the magnitude.

* The horizontal component of the vector is "a" and the vertical component of the vector is "b", so the formula for magnitude is a version of Pythagorean Theorem: $|\mathbf{v}| = \sqrt{(a^2 + b^2)}$

Vector Addition

Let u = <u₁, u₂> and v = <v₁, v₂>. The sum (also called the <u>resultant</u>) of the vectors u and v is

 $\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$

Parallelogram representation

Scalar Multiplication

- * To multiply by a scalar is to use Distributive Property.
- * Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and k be a scalar, then $k\mathbf{u} = \langle ku_1, ku_2 \rangle$

- * A **unit vector** has a length of one unit
 - * $|\mathbf{u}| = 1$
 - * A unit vector is found by: $\mathbf{u} = \mathbf{v} \div |\mathbf{v}|$

* Find the unit vector in the direction of:

* **u** = <6, -2>

* w = 7i + 7j

Direction Angles (again...)

- From chapter 4 you should remember that direction is measured in different ways, especially in navigation (i.e. *bearing*).
- In vectors, we specify the direction of a vector v using its <u>direction</u> <u>angle</u>, the angle θ that v makes with the positive x-axis.
- Using what you learned from chapter 4, the horizontal component of v is |v|cosθ and the vertical component of vθ is |v|sinθ

$a = |\mathbf{v}| \cos\theta$ and $b = |\mathbf{v}| \sin\theta$

* To solve for $a = |\mathbf{v}| \cos\theta$ and $b = |\mathbf{v}| \sin\theta$ is to **resolve the vector**.

Try this...

Find the component form of question #29 on page 464

Find the magnitude and direction of the vector described by <-1, 2>

Applications of Vectors

 The <u>velocity</u> of a moving object is a vector because velocity has both magnitude and direction. The magnitude of velocity is <u>speed</u>.