$k \in$ not

Key Concept Hyperbola

A hyperbola is the set of points P in a plane such that the absolute value of the difference between the distances from P to two fixed points F_{1} and F_{2} is a constant k.

$$
\left|P F_{1}-P F_{2}\right|=k \text {, where } k<F_{1} F_{2}
$$

Each fixed point F is a focus of the hyperbola.
Since F_{1} and F_{2} are the foci of the hyperbola, the long and short segments in each of the 2 colored paths differ in length by k.

A hyperbola consists of two smooth branches. The turning point of each branch is a vertex of the hyperbola. The segment connecting the two vertices is the transverse axis, which lies on the axis of symmetry. The two foci also lie on the axis of symmetry. The center of the hyperbola is the midpoint between the two vertices, which also is the midpoint between the two foci.

Just as for an ellipse, if the foci are ($\pm c, 0$), the distance between the two foci is $2 c$. If the vertices are ($\pm a, 0$), the distance between the vertices is $2 a$.

Since vertex P is on the hyperbola, it must satisfy the equation $\left|P F_{1}-P F_{2}\right|=k$, but you can also see that

$$
\begin{aligned}
\left|P F_{1}-P F_{2}\right| & =|[2 a+(c-a)]-(c-a)| \\
& =|2 a+c-a-c+a| \\
& =|2 a|=2 a
\end{aligned}
$$

Therefore, $k=2 a$.

In a standard hyperbola, c is related to a and b by the equation $c^{2}=a^{2}+b^{2}$. The length of the conjugate axis is $2 b$. The transverse and conjugate axes determine a rectangle that lies between the vertices, and the diagonals of that central rectangle determine the asymptotes of the hyperbola. Recall that an asymptote is a line that a graph approaches. The branches of the hyperbola will approach the asymptotes.

How to sketch a hyperbola:

1. Sketch the line segments at $\boldsymbol{x}=\boldsymbol{a}, \boldsymbol{x}=\boldsymbol{a}, \boldsymbol{y}=\boldsymbol{b}$, and $\boldsymbol{y}=\boldsymbol{-} \boldsymbol{b}$ to create a rectangle 2. Sketch the asymptotes by extending the rectangle's diagonals.
2. Use the rectangle and the extended diagonals to guide your drawing.

The reflection property of a hyperbola is important in optics. As with an ellipse, the reflection property of a hyperbola involves both foci, but only one branch reflects. Any ray on the external side of a branch directed at its internal focus will reflect off the branch toward the external focus.

Horizontal Hyperbola

Standard-Form Equation
Vertices
Foci
Asymptotes
a, b, c relationship

Vertical Hyperbola

Standard-Form Equation
Vertices
Foci
Asymptotes
a, b, c relationship

Center (h, \boldsymbol{k})

$$
\begin{gathered}
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
(h \pm a, k) \\
(h \pm c, k) \\
y-k= \pm \frac{b}{a}(x-h) \\
c^{2}=a^{2}+b^{2}
\end{gathered}
$$

Center ($\boldsymbol{h}, \boldsymbol{k}$)

$$
\frac{(y-k)^{2}}{a^{2}} \pi \frac{(x-h)^{2}}{b^{2}}=1
$$

$$
(h, k \pm a)
$$

$$
(h, k \pm c)
$$

$$
y-k= \pm \frac{a}{b}(x-h)
$$

$$
c^{2}=a^{2}+b^{2}
$$

