Interval Notation

 ∞ means infinity. Infinity ∞ is NOT a number; you can not do arithmetic with ∞ .

Infinity ∞ is a concept that means "can grow large without bound"

 $-\infty$ "negative infinity" means "can grow large negative without bound.

We use ∞ as the right endpoint in interval notation when the interval has no number as its upper bound. We use $-\infty$ as the left endpoint in interval notation when the interval has no number as its lower bound.

Parentheses indicate that	Set Notation using Inequalities		
the endpoint of the interval	$\{ x \text{ such that } x > -2 \}$	(−2, ∞)	
is not included in the interval.	$\{ x \text{ such that } x < 0 \}$	$(-\infty,0)$	
Parentheses correspond to	$\{ x \text{ such that } 1 < x < 5 \}$	(1, 5)	
> and < symbols An "endpoint" of ∞ or –	the set of all real numbers	$(-\infty, \infty)$	
∞ always has a parentheses.			
Square Brackets indicate	Set Notation using Inequalities	Interval Notation	
that the endpoint of the	$\{ x \text{ such that } x \leq 5 \}$	(-∞, 5]	
interval is included in the interval.	$\{ x \text{ such that } x \ge 7 \}$	[7, \infty]	
Square brackets correspond	$\{ x \text{ such that } -3 \le x \le 9 \}$	[-3, 9]	
$to \ge and \le symbols$			
one endpoint included	Set Notation using Inequalities	Interval Notation	
and	$\{ x \text{ such that } -3 < x \le 9 \}$	(-3, 9]	
one endpoint excluded	$\{ x \text{ such that } -3 \le x < 9 \}$	[-3, 9)	
If a variable may be in one	Set Notation using Inequalities	Interval Notation	
of several intervals, the	$\{ x \text{ such that } x < -2 \text{ or } x > 2 \}$	$(-\infty, -2) \cup (2, \infty)$	
intervals can be joined	{ x such that	[2, 4) U (7, 9]	
(united) using a union	$2 \le x < 4$ or $7 < x \le 9$		
symbol U, which means OR mathematically	{ x such that	[2, 4) U (8, ∞)	
OK mathematically	$2 \le x < 4$ or $x > 8$ }		
A union symbol can be used	Set Notation using Inequalities	Interval Notation	
to unite two or more	$\{ x \text{ such that } x \neq 6 \}$	$(-\infty, 6) \cup (6, \infty)$	
intervals that have a "hole"	is the same as the set		
of a single number in	$\{ x \text{ such that } x < 6 \text{ or } x > 6 \}$		
between them	$\{ x \text{ such that } x \neq -1 \text{ and } x \neq 4 \} \text{ is}$	$(-\infty, -1) \cup (-1, 4) \cup (4, \infty)$	
	the same as the set		
	$\{ x \text{ such that } x < -1 \text{ or } \}$		
	-1 < x < 4 or x > 4		

The words "such that" mean "that satisfy the following condition or conditions" and are often denoted using the symbol | or :

Practice Problems for Interval Notation:

Express the following inequalities using interval notation:

]	l. {	X	such	that x	\leq $-$	10	}
---	------	---	------	--------	------------	----	---

2.
$$\{x \text{ such that } x < 3\}$$

3.
$$\{x \text{ such that } x > 6\}$$

4.
$$\{x \text{ such that } x \ge -1/2 \}$$

5.
$$\{x \text{ such that } 2 < x < 5 \}$$

6.
$$\{x \text{ such that } -12 \le x \le -3 \}$$

7.
$$\{x \text{ such that } -17 < x \le 24 \}$$
 8. $\{x \text{ such that } 125 \le x < 400 \}$

8.
$$\{x \text{ such that } 125 \le x < 400 \}$$

9.
$$\{x \text{ such that } x \neq -0.40 \}$$

10.
$$\{x : x \neq -2 \text{ and } x \neq 2 \}$$
 11. $\{x : x < -4 \text{ or } x \geq 3 \}$

11.
$$\{x : x < -4 \text{ or } x \ge 3\}$$

12.
$$\{x : x \le 7 \text{ or } 10 < x < 12\}$$

© Roberta Bloom 2007

Answers to practice problems:

- 1. $(-\infty, -10]$
- 2. $(-\infty, 3)$
- 3. $(6, \infty)$
- 4. $[-1/2, \infty)$
- 5. (2, 5)
- 6. [-12, -3]
- 7. (-17, 24]
- 8. [125, 400)
- 9. $(-\infty, -0.40) \cup (-0.40, \infty)$
- 10. $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$
- 11. $(-\infty, -4) \cup [3, \infty)$
- 12. $(-\infty, 7] \cup (10, 12)$