3.4.2 & 3.5.1

LOG APPLICATIONS AND SOLVING LOGS

USES OF LOGARITHMS

- Decibel scale (dB)
 - $D = 10 \log \frac{I}{10^{-12}}$
- pH scale
 - $p = -\log H^+$
- Richter scale
 - $R = \log \frac{a}{T} + B$, where $a = amplitude is \mu m$ (micrometers), T = period (*in seconds*), *B* accounts for the weakening of the seismic wave due to distance from epicenter.

USES OF LOGARITHMS

- Newton's Law of Cooling
 - $T = T_m + (T_0 T_m) \cdot e^{-kt}$
- Financial applications
 - Interest earned (annually, quarterly, continuously, etc)
 - Annuities (future and present)
 - Annual percentage yield (APY)
- Order of magnitude
 - By how many times is one value more intense than another?

WHY USE A LOGARITHMIC SCALE?

- A linear scale has a <u>constant</u> rate of change (i.e. a slope triangle)
 - The difference between successive x-coordinate is the same
- In a logarithmic scale, the ratio between successive x-coordinates is the same

HOW TO SOLVE AN EXPONENTIAL OR LOGARITHMIC EQUATION (3.5.1)

- <u>ALWAYS</u> refer to the definition of a logarithm:
 - $y = \log_b x$ iff $b^y = x$

If you cannot evaluate the expression, rewrite it!

Note: You may need to use change of base in order to evaluate a logarithm

$$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$$