3.4.2 \& 3.5.1

LOG APPLICATIONS AND SOLVING LOGS

USES OF LOGARITHMS

- Decibel scale (dB)
- $D=10 \log \frac{I}{10^{-12}}$
- pH scale
- $p=-\log H^{+}$
- Richter scale
- $R=\log \frac{a}{T}+B$, where $a=$ amplitude is μm (micrometers), $T=$ period (in seconds), B accounts for the weakening of the seismic wave due to distance from epicenter.

USES OF LOGARITHMS

- Newton's Law of Cooling
- $T=T_{m}+\left(T_{0}-T_{m}\right) \cdot e^{-k t}$
- Financial applications
- Interest earned (annually, quarterly, continuously, etc)
- Annuities (future and present)
- Annual percentage yield (APY)
- Order of magnitude
- By how many times is one value more intense than another?

WHY USE A LOGARITHMIC SCALE?

- A linear scale has a constant rate of change (i.e. a slope triangle)
- The difference between successive x-coordinate is the same
- In a logarithmic scale, the ratio between successive x-coordinates is the same

HOW TO SOLVE AN EXPONENTIAL OR LOGARITHMIC EQUATION (3.5.1)

- ALWAYS refer to the definition of a logarithm:
- $y=\log _{b} x$ iff $b^{y}=x$

If you cannot evaluate the expression, rewrite it!

Note: You may need to use change of base in order to evaluate a logarithm

$$
\log _{b} x=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}
$$

