Logarithms

3.3.1, 3.4.1, 3.4.2, 3.1.3

Recall the Horizontal Line Test

Recall the definition of an inverse function

- So the inverse of $f(x)=b^{x}$ is

Which introduces the definition of a logarithm:

$$
y=\log _{b} x \text { if and only if } x=b^{y}
$$

So that means...

- The answer to a logarithm is an exponent
- Because this is true, we can evaluate logarithmic expressions using our understanding of exponents

History of logarithms

- Were developed around 1594 by a Scottish mathematician named John Napier
- Originally called "Napier's bones"
- Called them "artificial numbers" at first but changed to logarithms
- Logarithm means "reckoning numbers"

Evaluate the following by converting to exponential form

- $\log _{3} 81$
- $\log _{5} \sqrt{5}$
- $\log _{6} 1$
- $\log _{2.86} 2.86$

Logarithm Types

- Common logarithms
- Natural logarithms
- "Other" logarithms

Analyze $g(x)=-\log (x+2)$

- Domain:
- Range:
- Symmetry:
- Boundness:
- Increasing/decreasing:
- Extrema:
- Asymptotes:
- End Behavior:

Properties of Logarithms

- Logarithm of 1
- $\log _{b} 1=0$
- $\log _{b} b^{n}$

Properties of Logs

- $\log _{b} b=1$

Decibel formula

- The decibel scale (dB) is a measure of sound intensity given by the formula

$$
\beta=10 \cdot \log \frac{I}{10^{-12}}
$$

Use this formula to determine the decibel level of city traffic.

Properties of Logarithms

- Product Property of Logs
$\log _{b} x y=$
- Quotient Property of Logs

$$
\log _{b} \frac{x}{y}=
$$

Properties of Logs

- Power Rule:
- $\log _{b} x^{p}=p \log _{b} x$

Is the following true or false? Explain.

- $\log \frac{x}{4}=\frac{\log x}{\log 4}$
- $\log _{5} x^{2}=\left(\log _{5} x\right)\left(\log _{5} x\right)$

Expand/condense the following

- $\log _{2} y^{5}$
- $2 \ln x+3 \ln y$

Change of base formula

- To evaluate the logarithm of any base

$$
\log _{b} x=\frac{\log x}{\log b}
$$

Evaluate $\log _{8} 175$ by using the change of base formula

Graph Translation Thm (Again)

- For any basic function $f(x)=[x]$, the translation

$$
f(x)=a[b x-h]+k
$$

Represents a vertical stretch or compression of a (which also could represent a reflection over the x -axis, a horizontal stretch/compression of b, a horizontal shift of h units, and a vertical shift of k units

