Vocabulary					
Domain: The set	of all		of a relat	ion.	
Other words that	go with domain:				
Range: The set of	of all		of a relat	tion.	
Other words that	go with range:				
Function Rule: A	Another name for a	an			
Graphing a func	tion Rule				
Steps:					
1. Make a			of values	S.	
X-Value: Input	Equation		Y-Value	e: Output	Coordinate point (x,y)
Example 1: Gra	phing a function of the function ru ole of Values.	rule			
X-Value: Input	Equation	Y-value Output		Coordinate Point	
		_			

Step 2: Graph.

Example 2: Graphing a function rule

What is the graph of the function rule y = lxl - 4.

Step 1: Make Table of Values.

X-Value: Input	Equation	Y-value: Output	Coordinate Point

Step 2: Graph.

Example 3:

The function rule W = 146c + 30,000 represents the total weight W, in pounds, of a concrete mixer truck that carries c cubic feet of concrete. If the capacity of the truck is about 200 ft³, what is a reasonable graph of the function rule?

Step 1: Make a Table

X-Value:	Equation	Y-value:	Coordinate
Input		Output	Point

Step 2: Graph the ordered pairs.

Example 4:

The function rule W = 8g+700 represents the total weight W, in pounds, of a spa that contains g gallons of water. What is a reasonable graph of the function rule, given that the capacity of the spa is 250 gallons?

Step 1:

Step 2:				
Step 2:				
Vocabulary:	nh: A granh th	at is		
			of	
Example 5: Iden	ntifying Continu	uous and Discret	e Graphs	
Would the follow	ving be an exam	ple of a continuou	s or discrete graph???	
		ounces, depends o h the function ru	n the number of gallons m	of milk

B. The amount a of money made from selling cheese depends on the number n of wheels sold so **a** = **9n.** (**Graph the function rule**)

- **C.** The amount of water w in a wading pool, in gallons, depends on the amount of time t, in minutes, the wading pool has been filling, as related by the function rule $\mathbf{w} = 3\mathbf{t}$.
- **D.** The cost C for baseball tickets, in dollars, depends on the number n of tickets bought, as related by the function rule C = 16n.