4.4.1: Graphing a Function Rule

Vocabulary

Domain: The set of all \qquad of a relation.

Other words that go with domain:
Range: The set of all \qquad of a relation.

Other words that go with range:
Function Rule: Another name for an \qquad .

Graphing a function Rule
Steps:

1. Make a \qquad of values.

X-Value: Input	Equation	Y-Value: Output	Coordinate point (x, y)

2. Graph the \qquad .

Example 1: Graphing a function rule

What is the graph of the function rule $\mathrm{y}=-2 \mathrm{x}+1$.
Step 1: Make Table of Values.

X-Value: Input	Equation	Y-value: Output	Coordinate Point

Step 2: Graph.

4.4.1: Graphing a Function Rule

Example 2: Graphing a function rule

What is the graph of the function rule $\mathrm{y}=\mathrm{lxl}-4$.
Step 1: Make Table of Values.

X-Value: Input	Equation	Y-value: Output	Coordinate Point

Step 2: Graph.

Example 3:

The function rule $\mathbf{W}=\mathbf{1 4 6} \mathbf{c}+\mathbf{3 0 , 0 0 0}$ represents the total weight W , in pounds, of a concrete mixer truck that carries c cubic feet of concrete. If the capacity of the truck is about $200 \mathrm{ft}^{3}$, what is a reasonable graph of the function rule?

Step 1: Make a Table

X-Value: Input	Equation	Y-value: Output	Coordinate Point

Step 2: Graph the ordered pairs.

4.4.1: Graphing a Function Rule

Example 4:

The function rule $\mathbf{W}=\mathbf{8 g}+\mathbf{7 0 0}$ represents the total weight W , in pounds, of a spa that contains g gallons of water. What is a reasonable graph of the function rule, given that the capacity of the spa is 250 gallons?

Step 1:

X-Value: Input	Equation	Y-value: Output	Coordinate Point

Step 2:

Vocabulary:

Continuous Graph: A graph that is \qquad .

Discrete Graph: A graph that is \qquad of \qquad points.

Example 5: Identifying Continuous and Discrete Graphs

Would the following be an example of a continuous or discrete graph???
A. The weight of cheese, in ounces, depends on the number of gallons m of milk used. So $W=16 \mathrm{~m}$.(Graph the function rule)

4.4.1: Graphing a Function Rule

B. The amount a of money made from selling cheese depends on the number n of wheels sold so $\mathbf{a}=\mathbf{9 n}$. (Graph the function rule)

C. The amount of water w in a wading pool, in gallons, depends on the amount of time t, in minutes, the wading pool has been filling, as related by the function rule $\mathrm{w}=3 \mathrm{t}$.
D. The cost C for baseball tickets, in dollars, depends on the number n of tickets bought, as related by the function rule $\mathbf{C}=\mathbf{1 6} \mathbf{n}$.

