Polynomials

Guided Practice Worksheet

Exploring Polynomial Expressions

1. Determine whether each expression is a polynomial. If the expression is not a polynomial, explain why not. If the expression is a polynomial, classify it as a monomial, a binomial, or a trinomial.

(a) $6x^3y + 3x^2 - 5$

(b) -3

(c) 4x + 7y - 12

- (d) $6x^{-3y} + 3x^2 5$
- (e) 7*x*2*y*
- (f) $149x^3y^2z 57xy^2$
- 2. A rectangular swimming pool has a depth, or height, of 5 feet, and a length that is 20 feet greater than the width.
 - (a) Write polynomial expressions for the length and width of the pool.

length = _____

width = _____

(b) Use the height of the swimming pool, along with the polynomial expressions for length and width, to write and simplify a polynomial expression for the volume of water in the pool.

(c) Use the simplified polynomial expression from Question #2b to calculate the volume of water in a pool with the widths listed in the table.

Pool	Width (ft)	Volume of water (ft ³)
1	17	
2	20	
3	30	

- 3. A homeowner wants to build a walkway that is x feet wide around a rectangular pool with a length of 40 feet and a width of 20 feet.
 - (a) Write a polynomial expression for the total area of the pool and walkway. Simplify the expression.
 - (b) Use the simplified polynomial expression from Question #3a to calculate the total area needed for a pool with the widths listed in the table.

Pool	Walkway width (ft)	Area of pool & walkway (ft ²)
1	3	
2	5	
3	8	
4	10	

Polynomials

Guided Practice Worksheet

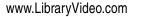
(e) Factor the quadratic equation from Question #1d and determine the width of the walkway. Check your solution.

2. Solve each equation by factoring. Check your solutions.

- **Factoring Polynomials**
- 1. A homeowner has 108 one-foot square tiles to make a walkway of equal width on all sides around a rectangular hot tub with a length of 8 feet and a width of 4 feet.
 - (a) Write a polynomial expression for the total length and the total width of the hot tub and walkway.

length = _____ width = _____

(b) $9x^2 + 24x = -16$


(a) $x^2 - 49 = 0$

(b) Write a polynomial expression for the total area of the hot tub and walkway. Simplify the expression.

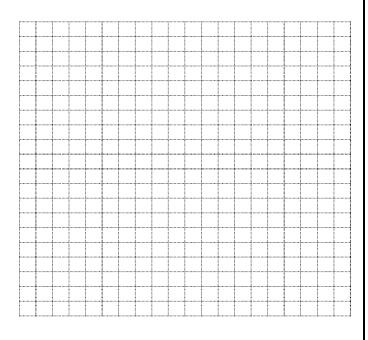
(c) $4x^2 - 4x + 1 = 0$

(c) Write a polynomial expression for the total area of the walkway.

(d) Use the polynomial expression from Question #1c to write a quadratic equation for the total area of the walkway.

Polynomials

Guided Practice Worksheet



Graphing Polynomials

The height of a diver after jumping off a diving board can be determined using the equation for general vertical motion, $y = h + vt - \frac{1}{2} at^2$, where *a* is the acceleration due to gravity, *h* is the height from which the diver jumps, *v* is the diver's upward velocity, and *t* is the time in seconds.

1. Write an equation that describes the height of a diver who jumps off a 3-meter diving board with an upward velocity of 3.2 m/s. (Note: The acceleration due to gravity is 9.8 m/s^2 .)

2. Graph the equation for values of t in intervals of one-tenth of a second from t = 0 to t = 1.5.

3. Approximately when does the diver hit the water? What is the name for this point on the graph?

4. Use a graphing calculator to graph the equation from Question #1. Describe the graphing calculator features that can help you determine as accurately as possible when the diver hits the water.

