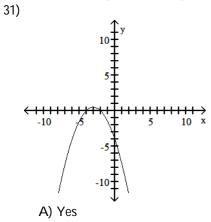
2013-14 Semester 1 Exam	Review - Precalculus		Test ID:	
Use interval notation to desc 1) x is greater than or	ribe the interval of real ne equal to 0 and less than or			1)
A) [0, 4)	B) (0, 4]	C) (0, 4)	D) [0, 4]	
B) The real num	pers greater than -6. pers less than or equal to - pers greater than or equal			2)
3) (-5, 3) A) The real numl B) The real num	pers less than 3. bers greater than -5.			3)

- C) The real numbers greater than or equal to -5 and less than 3.D) The real numbers greater than -5 and less than 3.

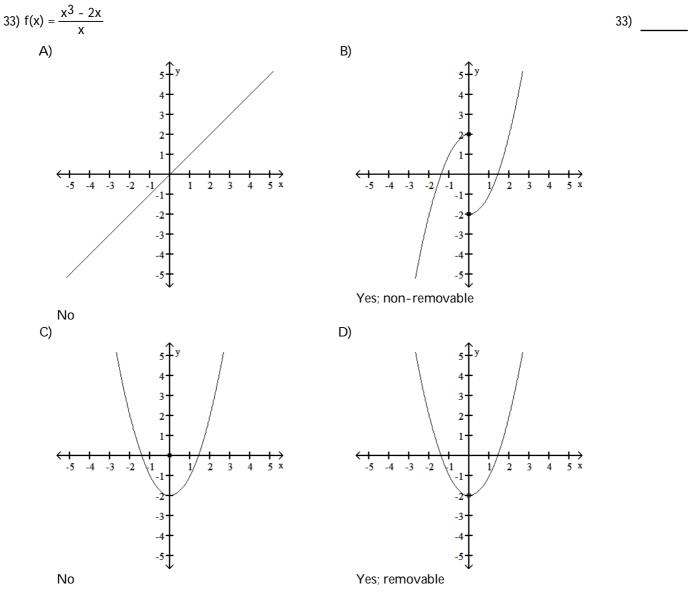

Simplify the expression. Assume that the variables in the denominator are nonzero.

$4)\left(\frac{12a^8b^5}{ab^2}\right)\left(\frac{2b^2}{4a^3b^7}\right)$				4)
A) $\frac{1}{6a^4b^2}$	B) 6a ⁴ b ²	C) $\frac{6a^4}{b^2}$	D) $\frac{3a^4}{b^2}$	
5) $\frac{(2x^3)^2z^5}{2z^9}$				5)
A) 2x ⁶ z ⁴	B) $\frac{x^6}{2z^4}$	C) $\frac{2x^6}{z^4}$	D) $\frac{x^6}{z^4}$	
Write the number in scientific not 6) 0.0000027813	ation.			6)
A) 2.7813 x 10-6	B) 2.7813 x 10 ⁻⁵	C) 2.7813 x 106	D) 2.7813 x 10-7	
7) 58.7616 A) 5.87616 x 10 ²	B) 5.87616 x 10 ⁻²	C) 5.87616 x 10 ¹	D) 5.87616 x 10 ⁻¹	7)
Write the number in decimal form 8) 6.07 × 10 ⁴ A) 607,000	n. B) 60,700	C) 6070	D) 242.8	8)

9) 4.49 × 10 ⁻⁴ A) 0.000449	B) 0.0000449	C) 0.00449	D) -449,000	9)
Solve the equation. 10) $\frac{1}{4}(8x - 12) = \frac{1}{3}(9x - 6)$				10)
A) x = -5	B) x = -1	C) $x = \frac{1}{5}$	D) x = 1	
11) $\frac{x+6}{7} = \frac{x+7}{8}$				11)
A) $x = \frac{13}{56}$	B) $x = \frac{1}{56}$	C) $x = \frac{13}{15}$	D) x = 1	
Solve the inequality. 12) -6 < 4q - 2 < 0				12)
A) $-\frac{1}{2} < q < \frac{1}{2}$	B) - 1 < q < 1	C) - 2 < q < $\frac{1}{2}$	D) - 1 < q < 2	
Find a point-slope form equation 13) (-4, 9), m = -5				13)
A) y - 9 = -5(x - 4)	B) $y - 9 = -5(x + 4)$	C) $y - 9 = 5(x + 4)$	D) $y + 9 = -5(x + 4)$	
Find a slope-intercept form equat 14) Through (0, 4), with slop	1			
(4) Through (0, 4), with Sior				
	Z			14)
	B) $y = 4x + \frac{3}{6}$	C) $y = \frac{3}{6}x - 4$	D) $y = \frac{3}{6}x + 4$	14)
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a powhere S(x) represents the	B) $y = 4x + \frac{3}{6}$ articular brand of appliance number of sales in year x	e satisfy the relationship S	(x) = 240x + 4900,	14)
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a p	B) $y = 4x + \frac{3}{6}$ articular brand of appliance number of sales in year x	e satisfy the relationship S	(x) = 240x + 4900,	·
 A) y = 4x - 3/6 Solve the problem. 15) Suppose the sales of a powhere S(x) represents the number of sales in 1992. A) 14,360 16) Let C(x) = 100 + 90x be to a sale supervised of the sal	B) y = 4x + $\frac{3}{6}$ articular brand of applianc the number of sales in year x B) 7300 he cost to manufacture x ite	e satisfy the relationship S x, with x = 0 corresponding C) 14,600	(x) = 240x + 4900, to 1982. Find the D) 7060	·
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a powhere S(x) represents the number of sales in 1992. A) 14,360	B) y = 4x + $\frac{3}{6}$ articular brand of applianc the number of sales in year x B) 7300 he cost to manufacture x ite	e satisfy the relationship S x, with x = 0 corresponding C) 14,600	(x) = 240x + 4900, to 1982. Find the D) 7060	15)
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a powhere S(x) represents the number of sales in 1992. A) 14,360 16) Let C(x) = 100 + 90x be t 80 items. Round to the n A) \$214 Use a method of your choice to so	B) y = 4x + $\frac{3}{6}$ articular brand of applianc be number of sales in year x B) 7300 he cost to manufacture x ite bearest dollar. B) \$91	e satisfy the relationship S a, with x = 0 corresponding C) 14,600 ems. Find the average cost	(x) = 240x + 4900, to 1982. Find the D) 7060 per item to produce	15)
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a powhere S(x) represents the number of sales in 1992. A) 14,360 16) Let C(x) = 100 + 90x be t 80 items. Round to the n A) \$214 Use a method of your choice to so 17) $x^2 + 3x - 28 = 0$	B) $y = 4x + \frac{3}{6}$ articular brand of appliance the number of sales in year x B) 7300 the cost to manufacture x its the the equation.	e satisfy the relationship S c, with x = 0 corresponding C) 14,600 ems. Find the average cost C) \$160	(x) = 240x + 4900, to 1982. Find the D) 7060 per item to produce D) \$169	15)
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a powhere S(x) represents the number of sales in 1992. A) 14,360 16) Let C(x) = 100 + 90x be t 80 items. Round to the n A) \$214 Use a method of your choice to so 17) $x^2 + 3x - 28 = 0$	B) y = 4x + $\frac{3}{6}$ articular brand of applianc be number of sales in year x B) 7300 he cost to manufacture x ite bearest dollar. B) \$91	e satisfy the relationship S a, with x = 0 corresponding C) 14,600 ems. Find the average cost	(x) = 240x + 4900, to 1982. Find the D) 7060 per item to produce D) \$169	15)
A) $y = 4x - \frac{3}{6}$ Solve the problem. 15) Suppose the sales of a powhere S(x) represents the number of sales in 1992. A) 14,360 16) Let C(x) = 100 + 90x be t 80 items. Round to the n A) \$214 Use a method of your choice to so 17) $x^2 + 3x - 28 = 0$	B) $y = 4x + \frac{3}{6}$ articular brand of appliance the number of sales in year x B) 7300 the cost to manufacture x its the the equation.	e satisfy the relationship S c, with x = 0 corresponding C) 14,600 ems. Find the average cost C) \$160	(x) = 240x + 4900, to 1982. Find the D) 7060 per item to produce D) \$169	15)

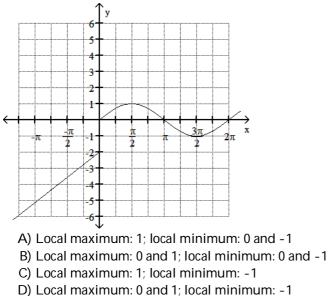
19) $ 2x - 9 = 4$				19)
A) $x = -\frac{13}{2}$ or $x = \frac{13}{2}$		B) $x = \frac{5}{2}$ or $x = \frac{13}{2}$		
C) x = 5 or x = 13		D) $x = -\frac{9}{2}$ or $x = \frac{9}{2}$		
20) $x^3 - 12x^2 + 48x - 70 = 0$				20)
A) x = 5.82	B) x = 2.18	C) x = 4	D) x = -2.18	·
Write the sum or difference in the st	andard form a + bi.			
21) (8 + 8i) - (-7 + i) A) -15 - 7i	B) 15 - 7i	C) 15 + 7i	D) 1 + 9i	21)
22) 5i + (-7 - i) A) -7 + 6i	B) 7 - 6i	C) -7 + 4i	D) 7 - 4i	22)
Write the product in standard form. 23) (6 - 3i)(5 - 7i)				23)
A) 9 - 57i	B) 21i ² - 57i + 30	C) 51 + 27i	D) 9 + 57i	
24) (2 + 7i)(4 - 3i) A) 29 + 22i	B) -21i ² + 22i + 8	C) -13 + 34i	D) 29 - 22i	24)
Write the expression in the form bi, 25) $\sqrt{-2500}$	where b is a real number.			25)
A) 50i	B) ±50	C) -50i	D) i√50	
26) √-270 A) -3√30	B) 3i√ <u>30</u>	C) 3√ <u>30</u>	D) -3i√30	26)
		, ,	, ,	
Find the real numbers x and y that m 27) $(-3 - 7i) + 7 = x - (5 + yi)$	·			27)
A) x = -15, y = 7	B) x = 9, y = 7	C) x = -5, y = -7	D) x = -5, y = 7	
Solve the equation. 28) $-5x^2 - 5x - 4 = 0$				28)
A) $\frac{1}{2} \pm \frac{\sqrt{55}}{10}$	B) $-\frac{1}{2} \pm \frac{\sqrt{55}}{10}i$	C) $\frac{1}{2} \pm \frac{\sqrt{55}}{10}i$	D) $-\frac{1}{2} \pm \frac{\sqrt{55}}{10}$,
Solve the inequality.				
29) x ² - 5x ≥ -4 A) (-∞, 1]	B) [1, 4]	C) [4, ∞)	D) (-∞, 1] ∪ [4, ∞)	29)
Write a mathematical expression for				22)
30) The profit consists of a fram A) \$100,000 - 0.1	nchise fee of \$100,000 plus B) 10x + 100,000	10% of all sales C) 0.1 + 100,000x	D) (0.1x + 100,000)	30)

Determine whether the graph is the graph of a function.


B) No

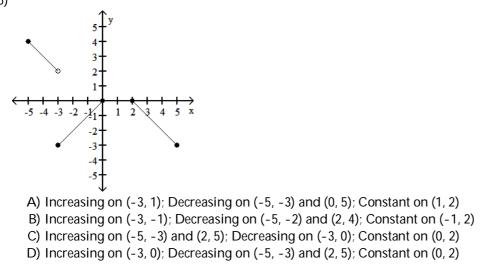
31)

Find the domain of the given function.


32)
$$f(x) = \frac{\sqrt{x+5}}{(x+8)(x-4)}$$

A) $[-5, 4) \cup (4, \infty)$
C) $(0, \infty)$
B) All real numbers
D) $(-\infty, -8) \cup (-5, 4) \cup (4, \infty)$

Graph the function and determine if it has a point of discontinuity at x = 0. If there is a discontinuity, tell whether it is removable or non-removable.



Solve the problem.

34) Use the graph of f to estimate the local maximum and local minimum.

Determine the intervals on which the function is increasing, decreasing, and constant. 35)

Determine if the function is bounded above, bounded below, bounded on its domain, or unbounded on its domain. 3 36)

36)
$$y = 5 - x^2$$

- A) Bounded above
- C) Bounded domain

B) Bounded below D) Unbounded

34)

35)

Find the asymptote(s) of the given function.

37)
$$f(x) = \frac{x - 1}{x^2 + 6x}$$
 vertical asymptotes(s)
A) $x = 6$ B) $x = 1$ C) $x = 0, x = -6$ D) $x = -6$

Identify which of the twelve basic functions listed below fit the description given. $y = x, y = x^2, y = x^3, y = |x|, y = \frac{1}{x}, y = e^x, y = \sqrt{x}, y = \ln x, y = \sin x, y = \cos x, y = \operatorname{int}(x), y = \frac{1}{1 + e^{-x}}$

38) The four functions with local minima

A)
$$y = \sqrt{x}$$
, $y = \sin x$, $y = \cos x$, $y = x^2$
B) $y = x^2$, $y = x^3$, $y = \sin x$, $y = \cos x$
C) $y = \sin x$, $y = \cos x$, $y = |x|$, $y = \frac{1}{1 + e^{-x}}$
D) $y = x^2$, $y = \sin x$, $y = \cos x$, $y = |x|$

39) The three functions that are even

A)
$$y = x, y = x^2, y = x^3$$

B) $y = x, y = \frac{1}{x}, y = x^3$
C) $y = \cos x, y = \sin x, y = |x|$
D) $y = x^2, y = \cos x, y = |x|$

40) The one function that is decreasing from $(0, \infty)$

A)
$$y = |x|$$
 B) $y = \frac{1}{1 + e^{-x}}$ C) $y = \frac{1}{x}$ D) $y = \ln x$

Perform the requested operation or operations. Find the domain of each.

41) $f(x) = \sqrt{x+6}$ and $g(x) = x-2 $		41)
Find fg.		
A) x - 2 √x + 6; domain: (-6, ∞)	B) x - 2 √x + 6; domain: (2, ∞)	
C) x ² + 4x - 12 ; domain: (-∞, ∞)	D) $\sqrt{x^2 + 4x - 12}$; domain: (- ∞ , -6) \cup (2, ∞)	

Perform the requested operation or operations.

42)
$$f(x) = \frac{1}{x - 4}$$
; $g(x) = \sqrt{x}$
Find $f(g(x))$.
A) $f(g(x)) = \frac{1}{\sqrt{x - 4}}$
B) $f(g(x)) = \sqrt{\frac{1}{x - 4}}$
C) $f(g(x)) = \frac{\sqrt{x}}{x - 4}$
D) $f(g(x)) = (x - 4)\sqrt{x}$

Find f(x) and g(x) so that the function can be described as y = f(g(x)).

43)
$$y = \sqrt{-26x^2 + 26}$$

A) $f(x) = -26x^2 + 26$, $g(x) = \sqrt{x}$
B) $f(x) = \sqrt{x}$, $g(x) = -26x^2 + 26$
C) $f(x) = \sqrt{-26x^2}$, $g(x) = \sqrt{26}$
D) $f(x) = \sqrt{-26x + 26}$, $g(x) = x^2$

43)

37)

38)

39)

40)

42)

Find the inverse of the function. 44) $f(x) = x^3 - 8$		44)
A) $f^{-1}(x) = \sqrt[3]{x-8}$	B) $f^{-1}(x) = \sqrt[3]{x+8}$	
C) Not a one-to-one function	D) $f^{-1}(x) = \sqrt[3]{x + 8}$	
Determine if the function is one-to-one. 45) 45 45 -10 -5 -10		45)
A) No	B) Yes	
 Fill in the blanks to complete the statement. 46) The graph of y = -6x³ + 4 can be obtained from the g factor of ?; reflecting across the ? - axis, and shifting A) 6; y; 4; upward C) -6; x; 4; downward 		46)
Write an equation for the quadratic function whose graph cor 47) Vertex (-3, -5), point (-6, 22) A) $P(x) = 3x^2 + 18x + 22$	ntains the given vertex and point. B) $P(x) = 3x^2 + 3x + 5$	47)

A) $P(x) = 3x^2 + 18x + 22$	B) $P(x) = 3x^2 + 3x + 5$
C) $P(x) = -3x^2 + 18x + 5$	D) $P(x) = -6x^2 - 18x -$

Solve the problem.

48) A projectile is thrown upward so that its distance above the ground after t seconds is			48)	
h = -16t ² + 608t. Afte	er how many seconds do	oes it reach its maximum he	ight?	
A) 28.5 s	B) 9 s	C) 38 s	D) 19 s	

22

49)

Write the statement as a power function equation. Use k as the constant of variation. 49) The area of an equilateral triangle varies directly as the square of the side s. ~2 Ŀ

A)
$$A = \frac{k}{s^2}$$
 B) $A = \frac{s^2}{k}$ C) $A = k^2 s$ D) $A = ks^2$

50) John kept track of the time it took him to drive to college from his home and the speed at which he 50) drove. He found that the time t varies inversely as the speed r.

B) $t = \frac{k}{r}$ D) t = $\frac{r}{k}$ C) t = kr A) r = kt

Data are given for y as a power function of x. Write an equation for the power function, and state its power and constant of variation.

of variation.				
51) <u>x 1 8</u>	2764125216681012			51)
				·
	5x ; Power = 1; constant of va			
B) $y = \sqrt{x}$	\bar{k} ; Power = $\frac{1}{2}$; constant of var	ation = 1		
	$\sqrt[3]{x}$; Power = -3; constant of v			
D) y = 2 1	$\sqrt[3]{x}$; Power = $\frac{1}{3}$; constant of v	ariation = 2		
	5			
Solve the problem. Re	ound as appropriate.			
		the square of the distance D from th		52)
intensity of 20 ft from th		om a light is 3 foot-candles, find th	e intensity on a screen	
	pot-candle	B) 3/17 foot-candle		
C) 1 3/16	foot-candles	D) 2 foot-candles		
53) The gravita	tional attraction A between tw	o masses varies inversely as the squ	are of the distance	53)
		25 Ib when the masses are 4 ft apart		
when the m	asses are 6 ft apart?			
A) 4 lb	B) 3 lb	C) 2 lb	D) 1 lb	
l leo a graphing calcul	ator to approvimate the real z	eros of the function defined by f(x) Express desimal appr	ovimations to
the nearest hundredth				
54) $f(x) = x^4 - 3$	$1.10x^3 + 0.06x^2 + 4.55x - 1.18$			54)
A) -1.14,	2.33, -0.27	B) 1.14, 1.64, 2.33, -0.2	7	
C) -1.14,	1.64, 2.33, 0.27	D) -1.64, -0.27		
Find the zeros of the	polynomial function and state	e the multiplicity of each.		
55) $f(x) = 5(x + x)$	$7)^{2}(x - 7)^{3}$			55)
-	ultiplicity 2; 7, multiplicity 3			, <u> </u>
B) -7, mi	ultiplicity 3; 7, multiplicity 2			
C) 4, mul	tiplicity 1; -7, multiplicity 3; 7	, multiplicity 3		
D) 4, mul	tiplicity 1; 7, multiplicity 1; -7	, multiplicity 1		
Divide using either m	nethod and write a summary s	tatement in fraction form.		
-	-			- 0
56) $\frac{2x^5 - x^4 + 3}{x - 3}$	1			56)
	2 2 4 2 8		. 6	
A) 2x ⁴ +	$x^3 + x^2 + 4x + 3 + \frac{8}{x+1}$	B) 2x ⁴ + x ³ - x ² + 2x +	$1 + \frac{1}{x+1}$	
C) 2x ⁴ +	$x^{3} + 4x^{2} + 3x + \frac{8}{x + 1}$	D) $2x^4 - 3x^3 + x + \frac{6}{x + 3}$	-	
	X + 1	X +	l	

Divide using synthetic division, and write a summary statement in fraction form.

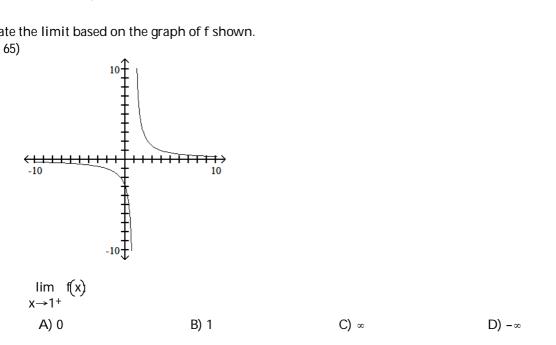
57) $\frac{2x^4 - x^3 - 15x^2 + 3}{x + 3}$				57)
A) 2x ³ - 5x ² + 3	$+\frac{-9}{X+3}$	B) 2x ³ - 7x ² + 6	$15 + \frac{45}{x+3}$	
C) 2x ³ + 5x ² + 3	$+\frac{9}{X+3}$	D) 2x ³ - 7x ² + 6	$x - 15 + \frac{-45}{x + 3}$	
Find the remainder when f(x				
58) f(x) = 7x ⁴ + 12x ³ + A) 1704	6x ² - 5x + 16; k = 3 B) 946	C) 2512	D) 188	58)
59) f(x) = 2x ⁴ + 7x ³ + 8 A) 30	8x ² + 4x - 3; k = -3 B) -150	C) 294	D) 558	59)
Use the Factor Theorem to d 60) x + 3; 5x ³ + 13x ² - A) No		polynomial is a factor o B) Yes	f the second polynomial	60)

Use the Rational Zeros Theorem to write a list of all potentia	I rational zeros	
61) $f(x) = -2x^4 + 4x^3 + 3x^2 + 18$		61)
A) ± 1 , ± 2 , $\pm \frac{1}{2}$, $\pm \frac{1}{3}$, $\pm \frac{1}{6}$, $\pm \frac{1}{9}$, $\pm \frac{1}{18}$	B) ± 1 , $\pm \frac{1}{2}$, ± 2 , ± 3 , ± 6 , ± 9 , ± 18	
C) ±1, ±2, ±3, ±6, ±9, ±18	D) ± 1 , $\pm \frac{1}{2}$, ± 2 , ± 3 , $\pm \frac{3}{2}$, ± 6 , ± 9 , $\pm \frac{9}{2}$, ± 18	

62)
$$f(x) = 13x^3 + 23x^2 + 2x - 26$$

A) $\pm 1, \pm \frac{1}{13}, \pm 2, \pm \frac{2}{13}, \pm 13, \pm 26$
B) $\pm 1, \pm \frac{1}{2}, \pm 13, \pm \frac{13}{2}, \pm \frac{1}{13}, \pm \frac{1}{26}$
C) $\pm 1, \pm 2, \pm 13, \pm 26$
D) $\pm 1, \pm \frac{1}{13}, \pm 2, \pm 13, \pm 26$

62)


65)

Solve the equation.

63)
$$\frac{x+2}{7} - \frac{x-5}{4} = 3$$

A) $x = -3$
B) $x = 127$
C) $x = 111$
D) $x = -\frac{41}{3}$

64)
$$x + 3 = \frac{10}{x}$$

A) $x = \pm \sqrt{10}$ B) $x = -2$ or $x = 5$ C) $x = -3$ D) $x = -5$ or $x = 2$

Evaluate the limit based on the graph of f shown.

Use limits to describe the behavior of the rational function near the indicated asymptote.

66) f(x) =
$$\frac{3}{x-4}$$
 (6)
Describe the behavior of the function near its vertical asymptote.
A) $\lim_{x \to -4^{-1}} f(x) = -\infty$, $\lim_{x \to -4^{+1}} f(x) = \infty$
() $\lim_{x \to -4^{-1}} f(x) = \infty$, $\lim_{x \to -4^{+1}} f(x) = \infty$
() $\lim_{x \to -4^{-1}} f(x) = \infty$, $\lim_{x \to -4^{+1}} f(x) = \infty$
List the x- and y-intercepts, and graph the function.
67) f(x) = $\frac{-6}{x-6}$ (67)
() No x-intercepts, y-intercept: (0, 1):
() No x-intercepts, y-intercept: (0, -1):
() $\frac{10}{4}$

Solve the problem.

68) The profit made when t units are sold, t > 0, is given by P = t^2 - 34t + 288. Determine the number of 68) units to be sold in order for P < 0 (a loss is taken). 0

A) 16 < t < 18	B) t < 16 or t > 18	C) t = 16 or t = 18	D) t > 0
----------------	---------------------	---------------------	----------

Find the exponential function that satisfies the given conditions.

69) Initial mass = 415 g, halving once every 23 hours

A) m(t) = 415 · 2 ^{23t}	B) m(t) = 415 · 2t/23
C) m(t) = 415 $\cdot \left(\frac{1}{2}\right)^{t/23}$	D) m(t) = $415 \cdot \left(\frac{1}{2}\right)^{23t}$

Solve the problem.

 70) Suppose the amount of a radioactive element remaining in a sample of 100 milligrams after x years
 70)

 can be described by A(x) = 100e^{-0.01232x}. How much is remaining after 288 years? Round the answer to the nearest hundredth of a milligram.
 70)

 A) 2.88 milligrams
 B) 0.03 milligrams
 70)

 C) 3474.93 milligrams
 D) 354.82 milligrams
 70)

Find the exponential function that sa	itisfies the given conditi	ons.		
71) Initial value = 64, decreasin	ig at a rate of 0.5% per w	eek		71)
A) $f(t) = 64 \cdot 0.995^{t}$	B) $f(t) = 0.5 \cdot 0.36^{t}$	C) $f(t) = 64 \cdot 1.5^{t}$	D) f(t) = 64 · 1.005 ^t	

Decide whether the function is an exponential growth or exponential decay function and find the constant percentage rate of growth or decay.

 72) f(x) = 8.7 · 1.026^x A) Exponential growth function; 102.6% C) Exponential growth function; 2.6% 	B) Exponential decay function; 0.026% D) Exponential growth function; 0.026%	72)
Find the following using a calculator. Round to four decimal	places.	

73) log 93,200 A) 4.9694	B) 6.8372	C) 6.8374	D) 6.8376	73)
Simplify the expression. 74) e ^{ln 5}				74)
A) 5	B) <u>1</u>	C) In 5	D) e ⁵	

69)

Evaluate the logarithm. 75) $\log_{22} \sqrt{22}$ A) $-\frac{1}{2}$ B) $\frac{1}{2}$ C) 2 D) - 2

Describe how to transform the graph of the basic function g(x) into the graph of the given function f(x).

- 76) $f(x) = \ln (x + 8) 5; g(x) = \ln x$
 - A) Translate 8 units to the left and 5 units down.
 - B) Translate 8 units to the right and 5 units down.
 - C) Translate 8 units to the left and 5 units up.
 - D) Translate 5 units to the left and 8 units up.

Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

77) $3 \log_m x - 4 \log_m p^2$

A) $\log_{m} \frac{x^{3}}{2p^{4}}$ B) $\log_{m} \frac{x^{3}}{p^{6}}$ C) $\log_{m} \frac{3x}{4p^{2}}$ D) $\log_{\text{m}} \frac{x^3}{n^8}$

Assuming all variables are positive, use properties of logarithms to write the expression as a sum or difference of logarithms or multiples of logarithms.

78) $\log_{16}\left(\frac{9\sqrt{r}}{s}\right)$ 78) A) $\log_{16} 9 \cdot \frac{1}{2} \log_{16} r \div \log_{16} s$ B) $\log_{16} s - \log_{16} 9 - \frac{1}{2} \log_{16} r$ D) $\log_{16}9 + \frac{1}{2}\log_{16}r - \log_{16}s$ C) $\log_{16}(9\sqrt{r}) - \log_{16} s$

Use the change of base rule to find the logarithm to four decimal places.

79) log 144.8	-			79)
A) 0.4225	B) 5.1137	C) 2.5568	D) 0.1956	

75)

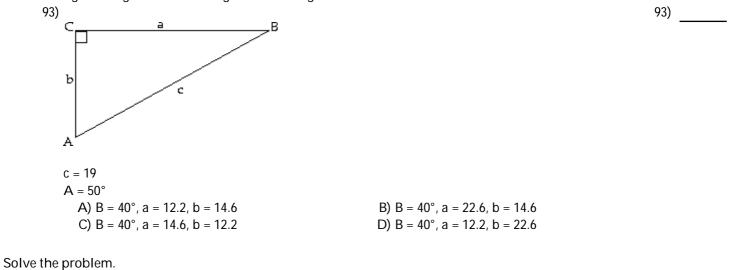
76)

77) _____

Note of the definition of the equation of the equation. 81	v F	he Richter scale magnitue vave and is measured by period in seconds, and B a	R = log (a/T) + B, where a ccounts for the weakening	ased on the features of the is the amplitude in μ m (m g of the seismic wave due t & when a = 220, T = 2, and	icrometers), T is the to the distance from	80)
81) $2e^{5x} - 2 = 10$ 81) A) 2.400 B) 0.630 C) 0.722 D) -0.078 Solve the equation by changing it to exponential form. 82) $\log_2 x = -4$ 82) A) $x = -(4)^2$ B) $x = \frac{1}{24}$ C) $x = -2\cdot4$ D) $x = -\frac{4}{\log_2 4}$ Find the exact solution to the equation. 83) 5 ln $(x - 7) = 1$ B) $x = e^{1/5} - 7$ C) $x = 5e + 7$ D) $x = e^{1/5} + 7$ A) $x = e^5 + 7$ B) $x = e^{1/5} - 7$ C) $x = 5e + 7$ D) $x = e^{1/5} + 7$ Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 84) $57^*29'38''$ B) 57.49° C) 57.50° D) 57.55° Convert the angle to degrees, minutes, and seconds. 85) 301.51° B) $301^*35'51''$ C) $301^*30'36''$ D) $301^*31'35''$ 86) 232.21° 80) 232.21° 80)	•		B) 1.4586	C) 5.5414	D) 9.0414	
Solve the equation by changing it to exponential form. 82) $\log_2 x = -4$ A) $x = -(4)^2$ B) $x = \frac{1}{24}$ C) $x = -2 \cdot 4$ D) $x = -\frac{4}{\log_2 4}$ Find the exact solution to the equation. 83) 5 ln $(x - 7) = 1$ A) $x = e^5 + 7$ B) $x = e^{1/5} - 7$ C) $x = 5e + 7$ D) $x = e^{1/5} + 7$ Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 84) $57^{*}29^{*}38''$ A) 57.45° B) 57.49° C) 57.50° D) 57.55° 84) Convert the angle to degrees, minutes, and seconds. 85) 301.51° A) $301^{*}30^{*}51''$ B) $301^{*}35^{*}51''$ C) $301^{*}30'36''$ D) $301^{*}31'35''$ 86) 86) 232.21^{\circ} 86)			nate solution to the equation	ion.		81)
82) $\log_2 x = -4$ 82) A) $x = -(4)^2$ B) $x = \frac{1}{24}$ C) $x = -2 \cdot 4$ D) $x = -\frac{4}{\log_2 4}$ Find the exact solution to the equation. 83) 5 ln $(x - 7) = 1$ 83) A) $x = e^5 + 7$ B) $x = e^{1/5} - 7$ C) $x = 5e + 7$ D) $x = e^{1/5} + 7$ Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 84) 84) 84) 57'29'38'' B) 57.49° C) 57.50° D) 57.55° Convert the angle to degrees, minutes, and seconds. 85) 301.51° A) 301°30'51'' B) 301°35'51'' 86) 232.21° 86) 232.21° 86)	,	A) 2.400	B) 0.630	C) 0.722	D) -0.078	,
Find the exact solution to the equation. $\begin{array}{c} 83) 5 \ln (x - 7) = 1 \\ A) x = e^{5} + 7 \\ B) x = e^{1/5} - 7 \\ C) x = 5e + 7 \\ D) x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 83) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ B \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ x = e^{1/5} + 7 \\ \end{array}$ $\begin{array}{c} 84) \\ = \\ 10 \\ \end{array}$ $\begin{array}{c} 85) \\ = \\ 10 \\ \end{array}$ $\begin{array}{c} 86) \\ = \\ 10 \\ \end{array}$ $\begin{array}{c} 86) \\ = \\ 10 \\ \end{array}$		$og_2 x = -4$				82)
83) $5 \ln (x - 7) = 1$ 83) A) $x = e^5 + 7$ B) $x = e^{1/5} - 7$ C) $x = 5e + 7$ D) $x = e^{1/5} + 7$ Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 84) $57^{\circ}29'38''$ 84) A) 57.45° B) 57.49° C) 57.50° D) 57.55° Convert the angle to degrees, minutes, and seconds. 85) 301.51° 8) $301^{\circ}30'51''$ A) $301^{\circ}30'51''$ B) $301^{\circ}35'51''$ C) $301^{\circ}30'36''$ D) $301^{\circ}31'35''$ 86) 232.21° 86) 86)		A) $x = -(4)^2$	B) $x = \frac{1}{2^4}$	C) $x = -2 \cdot 4$	D) $x = -\frac{4}{\log_2 4}$	
83) $5 \ln (x - 7) = 1$ 83) A) $x = e^5 + 7$ B) $x = e^{1/5} - 7$ C) $x = 5e + 7$ D) $x = e^{1/5} + 7$ Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 84) $57^{\circ}29'38''$ 84) A) 57.45° B) 57.49° C) 57.50° D) 57.55° Convert the angle to degrees, minutes, and seconds. 85) 301.51° 8) $301^{\circ}30'51''$ A) $301^{\circ}30'51''$ B) $301^{\circ}35'51''$ C) $301^{\circ}30'36''$ D) $301^{\circ}31'35''$ 86) 232.21° 86) 86)						
Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 84) 57°29'38" 84) A) 57.45° B) 57.49° C) 57.50° D) 57.55° Convert the angle to degrees, minutes, and seconds. 85) 301.51° 85) 301.51° A) 301°30'51″ B) 301°35'51″ C) 301°30'36″ D) 301°31'35″ 86) 232.21° 86)		5 ln (x - 7) = 1				83)
84) 57°29'38" 84) A) 57.45° B) 57.49° C) 57.50° D) 57.55° Convert the angle to degrees, minutes, and seconds. 85) 301.51° A) 301°30'51" B) 301°35'51" C) 301°30'36" D) 301°31'35" 86) 232.21° 86)		A) x = e ⁵ + 7	B) x = e ^{1/5} - 7	C) x = 5e + 7	D) $x = e^{1/5} + 7$	
Convert the angle to degrees, minutes, and seconds. 85) 301.51° A) 301°30′51″ B) 301°35′51″ C) 301°30′36″ D) 301°31′35″ 86)			es and round to the neares	st hundredth of a degree.		84)
85) 301.51° 85) A) 301°30′51″ B) 301°35′51″ C) 301°30′36″ D) 301°31′35″ 86) 232.21° 86)	,		B) 57.49°	C) 57.50°	D) 57.55°	
85) 301.51° 85) A) 301°30′51″ B) 301°35′51″ C) 301°30′36″ D) 301°31′35″ 86) 232.21° 86)						
A) 301°30′51″ B) 301°35′51″ C) 301°30′36″ D) 301°31′35″ 86) 232.21° 86)			es, and seconds.			85)
	00) 3		B) 301°35′51″	C) 301°30′36″	D) 301°31′35″	
	86) 2		B) 232°12′36′′	C) 232°13′35″	D) 232°12′21″	86)

Convert from degrees to radians. Use the value of π found on a calculator and round answers to four decimal places, as needed. 87) 324°
87)

324				
Α) <u>8π</u> 5	B) $\frac{9\pi}{5}$	C) $\frac{9\pi}{10}$	D) $\frac{18\pi}{5}$	


Convert the radian measure to degree measure. Use the value of π found on a calculator and round answers to two decimal places.

88) $-\frac{19}{6}\pi$				88)
A) -285°	Β) -1140π°	C) -9.94°	D) -570°	

Use the arc length formula and the given information to find the indicated quantity.

89) s = 9.8 ft, $\theta = \frac{\pi}{3}$ rad; fin	dr			89)
A) 29.4π ft	B) $\frac{\pi}{29.4}$ ft	C) 58.8π ft	D) $\frac{29.4}{\pi}$ ft	
90) r = 15 ft, θ = 35°; find s A) $\frac{35}{12}\pi$ ft	B) 1050 ft	C) 525 ft	D) $\frac{35}{24}\pi$ ft	90)
Find the angle in degrees that de 91) NW A) 292.5°	scribes the compass beari B) 270°	ng. C) 337.5°	D) 315°	91)
92) ENE A) 90°	B) 67.5°	C) 45°	D) 22.5°	92)

Solve the right triangle for all missing sides and angles to the nearest tenth.

int of the cloud base	to the nearest foot.			
.) 883 feet	B) 823 feet	C) 1294 feet	D) 1126 feet	

Find the measures of two angles, one positive and one negative, that are coterminal with the given angle. 95) -210°
95) _____

A) 1 50°; -570°	B) 150°; -390°	C) 60°; -480°	D) -750°; -570°
------------------------	----------------	---------------	-----------------