9.3.1/9.3.2

Probability

Definitions

- Outcome: The result of a trial, like flipping a coin, selecting an object, spinning a wheel, or rolling a die
- Sample Space: All the possible outcomes
- Event: Any outcome (or group of outcomes)
- Probability: notated P(event), tells you how likely it is that the event

Definitions

- Equally likely outcome: Outcomes of an experiment that have the same probability of occurring.

Are the events equally likely?

- Tossing a coin
- Choosing a candy from a bag of Skittles
- Drawing a queen from a standard 52card deck
- Rolling two dice and taking the sum
- Guessing all 6 numbers in a state lottery

Theoretical

Experimental

- The probability (percentage or fraction) that an outcome SHOULD occur
- All outcomes are equally likely to occur

\author{

- $P($ event $)=$
 $\frac{\text { \# of favorable outcomes }}{\text { \# in the sample space }}$
}
- The probability (percentage or fraction) that represents the outcome of an experiment
- $P($ event $)=$
\# of times outcome occured total \# of trials in experiment

Probability Distribution

- A T-chart that organizes the outcome and its corresponding probability

Outcome (x)	Probability $P(x)$	Outcome (x)	Probability $P(x)$
2		8	
3		9	
4		10	
5		11	
6		12	
7			

Probability Function $\mathrm{P}(\mathrm{x})$

${ }^{\circ} \mathrm{A}$ function P that assigns a real number to each outcome in the sample space S subject to the following conditions:

1. $0 \leq P(x) \leq 1$ for every outcome x
2. The sum of the probabilities must equal 1
$3 . P\{ \}=0$

- Complement of an event: all outcomes in the sample space that are not in the event.
- For example, if the event is rolling a number less than 3 on a die, the complement of the event is rolling the numbers $3-6$.
- $P($ event $)+P($ complement $)=1$
- $P($ complement $)=1-P($ event $)$
- To find the probability of two events occurring together, you have to decide whether one event occurring affects the other event.
- When the occurrence of one event affects how a second event can occur, then the events are dependent. If not, the events are independent.

Are these events dependent or independent?

- Roll a die then spin a spinner.
- Pick one card then a second (without replacing the first card)
- You pick a coin from a jar. You replace it and select again.

Compound Events

- If $\mathrm{A} \& \mathrm{~B}$ are independent events, then the probability that they will happen together is $P(A$ and $B)=P(A) \cdot P(B)$
- If two events cannot happen at the same time, they are called mutually exclusive. The probability they will happen together is 0 .

$$
P(A \text { and } B)=0
$$

- When events have at least one outcome in common, they are called overlapping events
- Peanut M\&Ms come in blue, brown, red, yellow, green, and orange.
- Find the proportion of the color blend and use it to complete the chart.

Color	Blue	Brown	Red	Yellow	Green	Orange
Prop.						

- Using this information, what is the probability that two candies chosen from the bag are both yellow?
- What is the probability that one is orange and the other is blue?
- What is the probability that neither candy chosen is red?

"OR" Probabilities

- Probability of mutually exclusive events:

$$
P(A \text { or } B)=P(A)+P(B)
$$

"OR" Probabilities

Probability of Overlapping Events:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

