9.3.1/9.3.2

Probability

Definitions

- <u>Outcome</u>: The result of a trial, like flipping a coin, selecting an object, spinning a wheel, or rolling a die
- <u>Sample</u> Space: All the possible outcomes
- <u>Event</u>: Any outcome (or group of outcomes)
- <u>Probability</u>: notated P(event), tells you how likely it is that the event

Definitions

• Equally likely outcome: Outcomes of an experiment that have the same probability of occurring.

Are the events equally likely?

- Tossing a coin
- Choosing a candy from a bag of Skittles
- Drawing a queen from a standard 52card deck
- Rolling two dice and taking the sum
- Guessing all 6 numbers in a state lottery

Theoretical

- The probability (percentage or fraction) that an outcome SHOULD occur
- All outcomes are equally likely to occur
- P(event) =
 # of favorable outcomes

in the sample space

Experimental

 The probability (percentage or fraction) that represents the outcome of an experiment

P(event) =
 # of times outcome occured

total # of trials in experiment

Probability Distribution

• A T-chart that organizes the outcome and its corresponding probability

Outcome (x)	Probability <i>P(x)</i>	Outcome (x)	Probability <i>P(x)</i>
2		8	
3		9	
4		10	
5		11	
6		12	
7			

Probability Function P(x)

A function P that assigns a real number to each outcome in the sample space S subject to the following conditions:

1. $0 \le P(x) \le 1$ for every outcome *x*

2. The sum of the probabilities must equal 1

 $3.P\{\} = 0$

- <u>**Complement of an event</u>**: all outcomes in the sample space that are not in the event.</u>
- For example, if the event is rolling a number less than 3 on a die, the complement of the event is rolling the numbers 3 – 6.
- P(event) + P(complement) = 1
- P(complement) = 1 P(event)

- To find the probability of two events occurring together, you have to decide whether one event occurring affects the other event.
- When the occurrence of one event affects how a second event can occur, then the events are <u>dependent</u>. If not, the events are <u>independent</u>.

Are these events dependent or independent?

• Roll a die then spin a spinner.

Pick one card then a second (without replacing the first card)

• You pick a coin from a jar. You replace it and select again.

Compound Events

- If A & B are independent events, then the probability that they will happen together is P(A and B) = P(A) · P(B)
- If two events cannot happen at the same time, they are called <u>mutually exclusive</u>. The probability they will happen together is 0. P(A and B) = 0
- When events have at least one outcome in common, they are called overlapping events

- Peanut M&Ms come in blue, brown, red, yellow, green, and orange.
 - Find the proportion of the color blend and use it to complete the chart.

Color	Blue	Brown	Red	Yellow	Green	Orange
Prop.						

- Using this information, what is the probability that two candies chosen from the bag are both yellow?
- What is the probability that one is orange and the other is blue?
- What is the probability that neither candy chosen is red?

"OR" Probabilities

• Probability of mutually exclusive events: P(A or B) = P(A) + P(B)

"OR" Probabilities

Probability of Overlapping Events: P(A or B) = P(A) + P(B) - P(A and B)

