Using Combinatorics to determine probability

Why?

\sim Probability is a ratio of the number of favorable outcomes the ones you want) divided by the number of possibilities (how many ways can the task be done)
~Because we don't usually care how the outcomes are ordered, this can be done with combinations.
~ It is easier to use combinatorics to find theoretical probability rather than listing and counting all the equally likely outcomes.
\sim What is the probability of being dealt exactly two sevens from a standard 52card deck?
~ The number of combinations of 7's:
\sim The number of combinations of non-7's:
\sim The number of possible 5-card hands:
~ Probability:
\sim Sometimes you need to use combinations and probability together
$\sim{ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}{ }^{*}\left(\mathrm{P}(\mathrm{A})^{\mathrm{r}}\right)^{*}(\mathrm{P}(\mathrm{B}))^{\mathrm{n}-\mathrm{r}}$
\sim This helps you find the total probability
~ You flip six coins. What is the probability...
\sim that you get 6 heads?
\sim that you get exactly 4 tails?
\sim that you get at least 4 tails?

Geometrical Probability

\sim Is the probability of areas
~Area of the favorable location divided by the total area

