3.1.1/3.1.2

Exponential Functions and Logistic Functions

Precalculus 12-13

ESSENTIAL UNDERSTANDINGS

- Exponential functions model unrestricted growth/decay over time
- × Logistic functions model restricted growth/decay over time
- Logarithmic functions model things like the Richter scale and the decibel scale

GENERAL DEFINITION - EXPONENTIAL

$\mathbf{x} f(x) = a \cdot b^x$

- $+a = initial \ condition$
- + b = base, growth decay factor
 - × If b > 1, it models exponential growth
 - × If 0 < b < 1, it models exponential decay
 - $\mathbf{x} b = 1 + r$, where *r* represents the constant percentage rate
- + x = independent variable, usually representing time

IS THE FOLLOWING AN EXAMPLE OF AN EXPONENTIAL FUNCTION?

 $\mathbf{x} \ g(x) = x^8 \qquad \mathbf{x} \ d(x) = 3^x$

 $f(x) = 4^4$

EXPONENTIAL POPULATION MODEL

★ If P is changing at a constant percentage rate r each year, then the data can be described by $P(t) = P_0(1+r)^t$

IDENTIFY THE FOLLOWING

 $f(x) = 78,963(0.986)^x$ $g(t) = 43(2.5)^t$

DETERMINE THE EXPONENTIAL MODEL

- × Initial value: 5
- Decreasing at a rate of
 0.59% per week

x	у
-2	1.472
-1	1.84
0	2.3
1	2.875
2	3.59375

ANALYZE THE FUNCTION

 $\times w(x) = 4(0.5)^x$

 The half-life of a certain radioactive substance is 65 days. There are 3.5 g present initially. Write the formula to model this situation.

× When will there be less than 1 g remaining?

THE NATURAL BASE

- $x e \approx 2.618281828459$
- Named after Leonhard Euler, who introduced the notation
- * $f(x) = e^x$ has special calculus properties that simply many calculations, thus e is called the natural base
- × Used most frequently in compounding continuous formulas, such as $A = Pe^{rt}$

The number of bacteria B found in a petri dish is given by the formula $B = 100 \cdot e^{0.693t}$

What is the number of bacteria initially present?

How many bacteria are present after 5.5 hours?

* The amount C of carbon-14 (in grams) after t years is given by $C = 20e^{-0.0001216t}$. Estimate the half-life of carbon-14. LOGISTIC FUNCTIONS

3.1.2

LOGISTIC FUNCTIONS

- In many growth situations, there is a limit to possible growth. The growth begins as an exponential manner, but eventually slows and the graph levels out, causing horizontal asymptotes
- Koraph is bounded (see pg. 89 for definition)

GENERAL FORMULA

$$H(x) = \frac{c}{1 + a \cdot b^x}$$

c is the limit to growth (a constant)

LOGISTIC FUNCTIONS ARE BOUNDED

- $\times \lim_{x \to -\infty} f(x) = 0$
- * $\lim_{x\to\infty} f(x) = c$; maximum sustainable population
- × Has a range of (0, c)
- **x** Two horizontal asymptotes y = 0, y = c, given the function has no vertical translation
- × See pg. 259 for more analysis

ANALYZE

 $\bigstar f(t) = \frac{12}{1+2 \cdot 0.8^x}$

FIND THE LOGISTIC EQUATION

Initial population: 16, maximum sustainable population: 128, passing through (5, 32).

The population of deer after t years is modeled by the function $D(t) = \frac{1001}{1+90 \cdot e^{-0.2t}}$.

What is the initial population of deer?

When will the deer population be 700?

What is the maximum sustainable population?