4.4.1/4.4.2

Sine and cosine functions

Amplitude

- Notated by a
- Dictates the maxima and minima

0 Graphically, it is one-half the height of the wave.

- Algebraically, it is represented as $\frac{M-m}{2}$

Sine Function

o $f(x)=a \sin (b(x-h))+k$

- $|a|=$ amplitude
o b = horizontal stretch/shrink
o $\mathrm{h}=$ phase shift (horizontal translation)
o $\mathrm{k}=$ vertical translation

Sine Function

○ Period $=\frac{2 \pi}{|b|}$

- Frequency $=\frac{|b|}{2 \pi}$

What is true about the period and frequency of a sine function?

Example

0 Find the amplitude, period, and frequency of the function $f(x)=\frac{-3}{2} \sin 2 x$

Example

- Graph one period of the function using only the information obtained from $g(x)=$ $2 \sin x$

Example

- State the amplitude, period, phase shift, and the vertical translation of

$$
h(x)=-3.5 \sin \left(2 x-\frac{\pi}{2}\right)-1
$$

Cosine Function

o $f(x)=a \cos (b(x-h))+k$

- $|a|=$ amplitude
ob=horizontal stretch/shrink
o $\mathrm{h}=$ phase shift (horizontal translation)
o $k=$ vertical translation

Cosine Function

- Period $=\frac{2 \pi}{|b|}$
- Frequency $=\frac{|b|}{2 \pi}$

What is true about the period and frequency of a cosine function?

Example

0 Identify the maxima and minima of $g(x)=-\cos 2 x+3$ by using your knowledge of transformations.

Example

○ Graph three periods of the function $j(\theta)=3 \cos \frac{\theta}{2}$

How to create a sinusoidal

 function from data- Determine the maximum value (call it M)
- Determine the minimum value (call it m)
- Find the amplitude (see slide \#2)
- Determine the period. Call it p. The horizontal shrink will be $b=\frac{2 \pi}{p}$

How to create a sinusoidal function from data

- Choose an appropriate sinusoid based on behavior at some given point. For example, - $f(t)=a \cos (b(t-h))+k$ attains a maximum value
- $f(t)=-a \cos (b(t-h))+k$ attains a minimum value
- $f(t)=a \sin (b(t-h))+k$ is halfway between a \min and a max value
- $f(t)=-a \sin (b(t-h))+k$ is halfway between a min and a max value

Example: Ebb \& Flow

o A high tide occurred at 9:36 am. At that time the water was 2.7 m deep. Low tide occurred at 3:48 p.m. at which time the water was 2.1 m deep. Assume that the depth of the water is a sinusoidal function of time with a period of half a lunar day (about 12 hours, 24 minutes).

Example: Ebb \& Flow

o What function models this phenomenon?

Example: Ebb \& Flow

- At what time did the first low tide of the day occur?
- What was the approximate depth of the water at 6:00 am and at 3:00 pm?
- When was the first time that the water was 2.4 m deep?

Temperature Model

- The normal monthly temperature in Helena, MT are shown below. Model the temperature T as a sinusoidal function of time, using 20 as the minimum value and 68 as the maximum value. Support your answer by superimposing your model over the scatterplot.

M	1	2	3	4	5	6	7	8	9	10	11	12
T	20	26	35	44	53	61	68	67	56	45	31	21

